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ABSTRACT 

A fast and stable method for computing the square root X of a given matrix A 
(X2 = A) is developed. The method is based on the Schur factorization A = QSQ” 
and uses a fast recursion to compute the upper triangular square root of S. It is shown 
that if a = 11X112/11All is not large, then the computed square root is the exact square 
root of a matrix close to A. The method is extended for computing the cube root of A. 
Matrices exist for which the square root computed by the Schur method is ill 
conditioned, but which nonetheless have well-conditioned square roots. An optimiza- 
tion approach is suggested for computing the well-conditioned square roots in these 
cases. 

1. INTRODUCTION 

Given an n by n matrix A, we propose a method for finding an n by n 
matrix X such that 

X2= A. 0.1) 

LINEAR ALGEBRA AND ITS APPLICATIONS 52/53:127-140 (1983) 127 

0 Elsevier Science Publishing Co., Inc., 1983 
52 Vanderbilt Ave., New York, NY 10017 00243795/83/$3.00 



128 z&E BJijRCK AND SVEN HAMMARLING 

X is called a square root of A and is denoted as 

Unlike the square root of a scalar, the square root of a matrix may not exist. 
For example, it is easy to verify that the matrix 

A=” 
[ 1 0 0 0.2) 

has no square root. 
If A has at least n - 1 nonzero eigenvalues, then A always has a square 

root; otherwise the existence of a square root depends upon the structure of 
the elementary divisors of A corresponding to the zero eigenvalues. (See for 
example [6], [15], [4], [l].) To indicate that existence is not a straightforward 
matter we note that, although the matrix of Equation (1.2) does not have a 
square root, the matrix 

does have a square root, one such square root being 

x= 
‘0 0 1 
0 0 0 
.o 1 0 I* 

Note that in this case X is not representable in the form of a polynomial in A 
[6, P. -2-W. 

A number of methods have been proposed for computing the square root 
of a matrix, and these are usually based upon Newton’s method, either 
directly or via the sign function (for example Beavers and Denman [3], 
Hoskins and Walton [lo], Alefeld and Schneider [I]). We first discuss 
Newton’s method, then propose a method for finding a square root based 
upon the Schur factorization together with a fast recursion method for finding 
a square root of an upper triangular matrix. Finally we discuss some numeri- 
cal difficulties and suggest a method for finding a square root in such difficult 
cases. 
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2. NEWTON’S METHOD 

If X, is an approximation to X and we put 

X=X,+E, (2.1) 

then substituting in Equation (1.1) and ignoring the term in E2 gives 

X,E+EX,=A-X,2, 

which gives the Newton iteration 

X,E, + E,X, = A - X,z, Xr+1 =X, + E,, r=O,l,... . (2.2) 

Several proposed methods start with an initial approximation X, which 
commutes with A, and instead basically use the iteration 

E,X,=;(A-X,2), Xr+l=Xr+E,, r=O,l,... . (2.3) 

It is easily shown that X, will then also commute with A for r >, 1. However, 
because of roundoff errors this will not be true for the computed X,. When 
AlI2 is ill conditioned the iteration (2.3) is therefore less stable than (2.2). 
Since (2.2) also allows the use of more general initial approximations, it seems 
to be the more useful extension of Newton’s method. 

The iteration (2.2) is a special case of the Newton iteration given by Davis 
[5] for the more general quadratic problem 

CX2+BX-A=O, 

and the analysis given by Davis can be applied to (2.2). The equation in (2.2) 
is a special case of the Sylvester equation 

GX+XH=C, (2.4) 

and effective methods for the solution of this equation have been given by 
Bartels and Stewart [2] and by Golub, Nash, and Van Loan [83. Equation (2.4) 
has a unique solution if and only if G and - H have no eigenvalues in 
common, so that Equation (2.2) has a unique solution if and only if pi * - /3, 
for all i and j where fii is an eigenvalue of X,. 



130 AKEBJ~~RcKANDsVENHAMMARLING 

Notice that if A and X, are both upper triangular, then Xr+i will also be 
upper triangular. This suggests that we might first find the Schur factorization 
of A, given by (Wilkinson [17]): 

A = QSQ”, (2.5) 

where Q is unitary and S is upper triangular, and then use Newton’s method 
to obtain an upper triangular matrix U such that 

u2=s. 

We can then take 

X = QUQ”. (24 

A suitable initial approximation for U is 

U, = diag( si[2), 

where sii is the ith diagonal element of S and hence of course an eigenvalue of 
A. The unexpectedly rapid convergence of Newton’s method for this case led 
us to discover the simple method of the next section. 

We should note at this point that an upper triangular matrix may not have 
an upper triangular square root, but may nevertheless still have a square root. 
The matrix of Equation (1.3) is such an example. We shall return to this point 
in Section 6. 

3. FINDING A SQUARE ROOT OF AN UPPER TRIANGULAR 
MATRIX 

Let S be an upper triangular matrix with at most one zero diagonal 
element, and let U be an upper triangular matrix such that 

u2=s. (3.1) 

For a general analytic function f, Parlett [13] has given a recurrence for the 
elements of f(S) based on the fact that if f(S) is well defined, then it 
commutes with S. This permits the buildup of U from its diagonal provided 
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that uii == ujj, i * j for all i, j. Whenever two or more diagonal elements of U 
are close, this recurrence has to be modified in a nontrivial way. For finding 
the square root of S we derive here a recurrence based instead on the relation 
(3.1). 

Comparing coefficients in Equation (3.1) gives 

j 
sij= c UikUkj> i < j, 

k=i 
(3.2) 

and hence 

and 

u.. = sv 
II It ’ i = 1,2 ,...,n, (3.3) 

sij- k~~~luikukj 

uij = 
uii+ujj ’ 

i < j. (3.4) 

We can therefore compute the elements of V, one superdiagonal at a time, 
starting with the leading diagonal and moving upwards. When computing the 
rtb diagonal Equation (3.4) only involves previously computed elements of U 
on the right hand side. 

If, whenever sii = sjj, we choose uii = uji’ then since S has at most one 
zero diagonal element, we are assured that 

uii + Ujjf 0 

and hence uij is defined. 
If S has more than one zero diagonal element, then an upper triangular 

matrix U satisfying Equation (3.1) may still exist. This can readily be 
determined if the Schur factorization of Equation (2.5) is chosen so that the 
diagonal elements of S are in descending order of absolute magnitude. Such 
an algorithm for the real case is given by Stewart [14]. In this case if S is 
singular, then for some 7 < n 

s,+1,,+1= %+2,,+2 =. . . = srln = 0, 

and U will exist if we also have 

sij = 0, i=r+l,r+2 ,..., n, j>i. (3.5) 
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In particular we can choose 

uij = 0, i=r+l,r+2 ,..., fl, jai, 

and then the remaining elements of U can be computed by Equations (3.3) 
and (3.4). If Equation (3.5) does not hold, then it is readily seen from 
Equation (3.2) that U does not exist. 

We note that if A is Hermitian, then the Schur factorization (2.5) becomes 
the classical spectral factorization with S diagonal. The matrix U can therefore 
also be chosen to be diagonal with diagonal elements given by Equation (3.3). 
Such a square root always exists. 

4. STABILITY OF THE METHOD 

If we now let U be the computed upper triangular matrix given by 
equations (3.3) and (3.4) and we define the matrix E as 

U2=S+E, 

then a straightforward error analysis applied to Equations (3.3) and (3.4) in 
the style of Wilkinson [16], as for example for the LU method, shows that 

leijl d 
i 
lsijl+ i d j, 

where 6 is of the order of n times the relative machine accuracy, and hence 

IIEII G (IISII+II~l12)~~ (4.1) 

where for the 1, 00, and Frobenius norms E = 6, and for the 2 norm E = n’/2S. 
Let us define (r to be such that 

JIA"2112 = allAll. (4.2) 

We can think of (Y as a condition number for the square root. If (Y is large, 
then we shall see that the problem of determining A1i2 is inherently ill 
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conditioned Note that we always have (Y >, 1, and that 

K = K(A”“) = IJA-“2(ll(A”2)1 > a, (4.3) 

so that when (Y is large AlI2 is necessarily ill conditioned in the usual sense. 
The inequality (4.3) is easily derived from the identity AlI2 = A-‘i2A. By 

taking norms we get 

IIA1’211 < IlA-“21111All = ~(l4lllA”~11-‘, 

and multiplying by (I A1/211, it follows that 

Since unitary transformations preserve the 2 and Frobenius norms, Equations 
(2.5) and (2.6) give that 

IlW2 = 4lSll (4.4) 

and we can expect Equation (4.4) to be a very good approximation even when 
U and S are the computed matrices. Thus from (4.1) and (4.4) we get for the 
2 and Frobenius norms 

IIEII G (I+ ~IISIIE (4.5) 

and lIEI will be small relative to IlSll ‘f i (Y is not large relative to unity. In 
particular if A is Hermitian, so that S and U are diagonal, then 

IIWE = IISll2~ S=SH, 

and (Y = 1, so that the Schur method applied to a Hermitian matrix is 
numerically stable. 

It is important to realize that there exist matrices for which LY can be large, 
and we strongly recommend that (Y be returned by any routine implementing 
this method. 

A result of the form of Equation (4.5) is more or less inevitable. If we let X 
be the exact square root of A and let X be the matrix X rounded to working 
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Z=X+F, IlEll G 4lW, 

where u is the unit rounding error, then 

Jf’=A+XF+FX+F’, 

and if we put 

E=XF+FX+F’, 

we have that 

JC~=A+E, 

where, using Equation (4.2), 

lIEI Q (2+ u)ul(X(12 = (2+ u)u+ll. 

Once again [IElI will be small relative to llAl[ if CT is not large relative to unity. 
Even if the square root obtained by the Schur method is ill conditioned, it 

may be that A nevertheless has a well-conditioned square root. We pursue this 
point in Section 6. 

5. THE CUBE ROOT OF A MATRIX 

The Schur method can also be used to find cube roots of matrices. Let S 
again be the upper triangular matrix in the factorization (2.5), but here let U 
be an upper triangular matrix such that 

u3=s, (5.1) 

We can again find U by comparing coefficients in Equation (5.1). If we let R 
be the upper triangular matrix given by 

R=U2 

and put 

j-l 

tij= c uik”kj$ i<j-1, 
k=i+l 
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i 
sii = c Uikrki = uiirii + uiirii + ig Uikrki 

k=i k=i+l 

and 

rii = c UikUki = Uii( uii + Uii) + tip 
k=i 

which leads to the equations 

u,, = s?P 
It tl ’ 

rii = uFi, (5.2) 

j-1 

sii - uiitii - c Uikrkj 
k=i+l 

uii = 
rii + uiiuii + rii ’ 

i < j, (5.3) 

rii = uii( uii + Uii) + tij, i < j. (5.4) 

These equations allow us to compute the elements of U and R one subdiago- 
nal at a time in a similar manner to the computation of the square root. 
Haying found U, we again determine X from Equation (2.6), but here of 
course X is a cube root of A, so that 

X3=A. 

With some algebraic effort this technique can clearly be extended to other 
roots. 

6. FINDING THE OPTIMALLY CONDITIONED SQUARE ROOT 

Consider first the matrix 

A=; f, 
[ 1 E> 0. 
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The only square roots of this matrix are 

x= 
[ 

E”2 l/(2&9 

0 
E1,2 ] and X= [ -f” -L!~s~)], 

so that when E is small, (Y is large and the problem of determining any square 
root of A is ill-conditioned. Of course, as E -+ 0 the matrix A tends to the 
matrix of Equation (1.2), for which no square root exists. 

However, if we consider the matrix 

A=; I 1 E 0 0, 1 E> 0, 

0 0 E 

then all the upper triangular square roots of A have 

Xl2 = + 1/(2E1’2), 

so that when E is small, these square roots are ill conditioned, but A also has 
well-conditioned square roots such as 

for which a is of order unity. 
The problem of determining such square roots seems to be far from trivial, 

but one possible approach is to solve the optimization problem given by 

minimize f(‘)= i: F lxij12 

j=l i-1 

(6.1) 

subject to X2-A==, 

which is a nonlinearly constrained least squares problem with rr2 variables and 
n2 constraints. We have successfully used this approach to solve a number of 
small problems using the NPL optimization library [12]. 

Because there are n2 variables, when n is not small the use of standard 
optimization software is expensive in terms of time and/or storage, but we 
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propose such an approach only when the solution given by the Schur method 
is unacceptable. If a large number of such problems are to be solved then the 
construction of a routine to take advantage of the special form of the Jacobian 
of the constraints may be warranted. 

Let C = C(X) be the constraint matrix given by 

C(X)=X2-A, (6.2) 

and use the notation 

where ci = 

‘lj 

‘2j I . * 

%j 

Also let G be the Jacobian matrix of c, so that G is the n2 by n2 matrix such 
that 

aCki 

g(k-l)n+i,(m-l)n+j= F’ k,m,i,j=1,2 ,..., n. 
P 

By differentiating in Equation (6.2) we find that 

G = 18X + Xr@Z, 

where 8 denotes the Kronecker product (see for example [9]), so that if the 
n2 element vectors h = vec( H) and y = vec( Y) are related by 

then 

y=Gh 

y=xZZ+ZZx. 

(6.3) 

Thus if y is given and we wish to solve the equations (6.3) for h, we again 
have a special case of Sylvester’s equation to solve. The equations (6.3) need 
to be solved if, for example, we are using an augmented Lagrangian method 
[7] to solve the problem (6.1). 

We note that the matrix G is singular at the solution if pi = - pi for any i 
and j, where & is an eigenvalue of the solution matrix X, and this can cause 
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difficulties when solving the problem (6.1). If this is the case, an alternative 
possibility is to use a penalty function approach and solve an unconstrained 
problem such as 

minimize f(X) = t i Ixij12 + PlJX’ - All$, p ’ 6, (6.4) 
j-1 i=r 

where p is the penalty parameter. Experience is needed here to assess suitable 
choices of p (see for example [7] for a discussion on penalty functions), but we 
were able to find a square root for the matrix A of the example (1.3) by 
solving the problem (6.4). Note that any square root of this matrix will have 
all its eigenvalues zero, and therefore G will be singular. 

It is not necessary to apply the method outlined in this section to the full 
matrix A. Assume that the Schur factorization of A has been computed with 
diagonal elements of S ordered in descending order of magnitude. Partition S 
and U= S112 as 

where k is chosen as large as possible but such that S,, 
triangular, well-conditioned square root. We need then apply 
this section only to compute the square root U,, of S,,. Now 

has an upper 
the method of 

so that we can finally solve for Vi, from the Sylvester equation, 

wJl2 + v,2%2 = %2* 

It should be noted that, even with this sort of optimization approach, a 
satisfactory square root may still be elusive because the problem (6.1) may 
have a number of local minima, so that we can still converge to a square root 
with a large (Y even when better square roots exist. Of course with suitable 
starting approximations it may also be possible to coax Newton’s method to 
converge to a satisfactory square root. There are plenty of open questions here 
related to the existence of well-conditioned square roots. 



SQUARE ROOT OF A MATRIX 139 

7. CONCLUSION 

We have presented a method for computing a square root of a matrix 
based upon the Schur factorization of the matrix. The Schur factorization can 
be computed by numerically stable techniques [17] and requires 0( n3) 
operations, this being the dominant part of the square root computation. Thus 
this method is efficient compared to methods based upon Newton’s method. 

It is important to monitor growth in the size of the norm of the square 
root relative to ]]A]] ‘I2 Unacceptable growth is not likely to be frequent in . 
practice, but when it occurs the discussion in Section 6 presents an alternative 
strategy. 

We gratefilly acknowledge the help and advice of Susan Hodson and 
Helen Jones in the use of the NPL optimization library. We also thank 
Michael Saunders who ran some examples using MINOS [ 111. 
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