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1. INTRODUCTION

In this contribution we give an overview of the numerical
solution of the general Gauss-Markov linear model given by

y = XB + e, eCN(O,GZW), (1.1)

2 .
where the notation eCN(0O,0 W) indicates that the noise vector e
is assumed to come from a normal distribution with mean zero

. . 2 . .
and variance-covariance matrix ¢ W, W being a symmetric non-
negative definite matrix.

We start by considering the standard case where W = I, then
consider the more general case where W is any non-singular
positive definite matrix and finally we consider the case where
W is allowed to be singular. The material in this contribution
is not new, but deserves an airing since it provides us with the
basic tools for the reliable implementation of least-squares
problems and the Kalman filter, and on a variety of
architectures.

2. THE STANDARD GAUSS-MARKOV LINEAR MODEL
In this section we look at the standard model

y = XB + e, eCN(o,ozl). (2.1)

The associated linear least-squares problem for this model is
given by

min 878, & =9 - %, (2.2)
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where X is the n by p matrix of observations, § the n element
vector of dependent observations, b is the p element vector of
regression coefficients and é is the n element error vector.
Throughout this article we shall assume that there are at least
as many observations as variables so that n 2 p, although much
of the discussion is readily extended to the underdetermined
case.

Tools for the reliable solution of (2.2) are the QR
factorization and the singular value decomposition (SVD). In
the next section we describe these factorizations. We shall
not give the algorithmic detail of computing these
factorizations, but instead give appropriate references.

3. THE QR FACTORIZATION AND THE SVD

The QR factorization of an n by p matrix X is given by

X =9 |R| , (3.1)
O.

where Q is an n by n orthogonal matrix and R is a p by p upper
triangular matrix. The SVD of X is given by

X =U [D} Ve, (3.2)
0

where U is an n by n orthogonal matrix, V is a p by p
orthogonal matrix and D is a diagonal matrix with non-negative
diagonal elements called the singular values of X. The
factorization can be chosen so that the singular values are in
descending order down D. The first p columns of U are the left
singular vectors of X and the columns of V are the right
singular vectors of X.

If we perform the QR factorization (3.1l) and then perform
an SVD of R as

R = WY (3.3)
then
x=0 W] =9o [¥ o [B] W
o I _oJ
= U N ¥
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and hence X and R have the same singular values and right
singular vectors.

From (3.1) and (3.2) we find that

xTx = RTR (3.5)

2T
VDV,

which are respectively the Cholesky and spectral factorizations
T
of X"X. Thus R and (V,D) give us alternative compact
. T . . .
representations of X X without having to take the numerically

damaging step of explicitly forming XTX. (Golub, 1965;
Hammarling, 1985.)

For many applications we can use the QR factorization when
X is not close to being rank deficient, but carry on to the
SVD otherwise. The SVD is a powerful tool for the analysis of
rank deficient and near rank deficient problems. For example,
from (3.2)

Xv, = d.,u,,

where dj, uj and vj are respectively the jth singular value,

left singular vector and right singular vector of X. Thus

[xv 11, = a

so that right singular vectors that correspond to small
singular values give information on the near linear
dependencies in the columns of X.

Both the QR factorization and the SVD can be obtained by
numerically stable methods, based upon orthogonal
transformations, and there are a number of sources of quality
software that implement these methods. For background on both
factorizations, the algorithms to compute them and many further
references see Golub and Van Loan (1983).

For signal processing applications, a useful transformation
is the plane rotation. This transformation is flexible and,
unlike the hyperbolic rotation, is orthogonal and therefore
has the desired numerical stability. Plane rotations are
described in the above reference and in Figure 3.1 we illustrate
the progress from X to R using the standard sequence of plane
rotations for the case n=4, p=3. (Givens, 1958.)
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X X X
X X
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Go
Fig. 3.1

A number of other sequences are possible, based upon
introducing zeros into a column in different orders and two
such alternative orderings are illustrated in Figure 3.2.

X X X X X X X Q X
X X <:x Q() X X Q)( o
X X 0o o] X Q X o o
X (o] (0] o X (0] o o
Fixed pivot Variable pivot
Fig. 3.2

Similarly we can perform plane rotations in disjoint
planes in parallel, an idea that originates from a paper on
error analysis for the QR factorization! (Gentleman, 1975; see
also Modi and Clarke, 1984.) One such sequence for the case
n=8, p=6 is illustrated in Figure 3.3, where rotations with
the same index can be performed in parallel.
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; gi i X X X X
GQX sgx ;( X X X
s‘gx 7‘)( gg X X X
o T I N S Y 4 . "
sﬂx sgx 7Qx ggi 11QX X
2QX 44X sgx sgx 1°Q: WQ:
R I T O

The number of parallel operations for the illustrated
sequence is (n+p-2) as opposed to %p(2n-p-1l) serial operations.

We can also readily update an existing QR factorization with
additional observations as they become available, a particularly
important feature for real time computing. This is illustrated
in Figure 3.4 for the case p=3.

X X X
X X R
X
X X X Additional row
X X X X X X X X X
X X X X X X Updated R
. ( x ¢
o X X (o] o X (o] (o] o
Fig. 3.4
These ideas form the basis of the systolic array
implementation of the QR factorization. (Gentleman and Kung,

1981.)

For the SVD, as already mentioned, we can first apply the
OR factorization and then find the SVD of R. The classical
method of computing the SVD is to use the method originating
with Golub and Kahan (1965) and realized as an Algol 60
algorithm by Golub and Reinsch (1970), in which R is reduced
to bi-diagonal form and then the implicit QR algorithm is used
to further reduce this to diagonal form. We note that R may
be reduced to bi-diagonal form by applying plane rotations from
both sides. This computation of the SVD is illustrated in
Figure 3.5. The method corresponds to the reduction of

RTR to tri-diagonal form, followed by the QR algorithm applied

to the tri-diagonal form.
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X X X X X X X
X X X ——> X X _ X
X X X X X
X X X
Plane rotations QR algorithm
from both sides (iterative)
Fig. 3.5

More recently a method due to Kogbetliantz (1955) has been
revived and in this method R is iteratively reduced to diagonal

form, corresponding to Jacobi's method
Jacobi's method each plane rotation is
by two symmetric eigenvalue problem so

T
applied to R R. 1In
chosen to solve the two
that c=cosf and s=sinb

are such that

and a sweep of Jacobi's method applies %n(n-1) such

transformations with

Yy T %55 %y
z - .
y 1] J3.
for each i and j (j>1). The usual method chooses i and j

cyclically, but other orderings are possible and, as with the
OR algorithm we can apply transformations in parallel. (Modi,
1982; Modi and Parkinson, 1982.)

In the Kogbetliantz method (Figure 3.6) each transformation
solves the two by two SVD problem, so that the left and right
rotations are such that

. _ _ .
cl sl X Y c2 32 X 0.1
z'J

and one sweep of the method corresponds to one sweep of
Jacobi. 1In the cyclic ordering one sweep makes R lower
triangular and a second sweep restores the upper triangle.
The Kogbetliantz approach is the basis of a systolic array
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implementation of the SVD. (Brent and Luk, 1985.)

X X X X X
X X X—3  x
X X X
X X
lterative
Fig. 3.6

4. SOLVING THE STANDARD LINEAR LEAST-SQUARES PROBLEM

In this section we consider the solution of the least-
squares problem
. ATaA ~ ~ A
min e'e, e =y - Xb (4.1)

using the QR factorization of (3.1) and the SVD. If we put

T A _ - TA _ -

Qe =1f = fl ’ Qy =2 = zl

B )

. T ~TA
then, since £ f = e e, (4.1l) becomes
. T -

min £ £, £ =2z - |R| b = zl - Rb (4.2)

0 .z

If X has full rank so that R is non-singular, we can choose b
as the solution of the upper triangular equations

Rb = z (4.3)
and hence this solves (4.2). Thus

T
= z,_2z

AT~
e e 2%g"

(4.4)

If X does not have full rank we can proceed with the SVD of R

T

N
R = UDV (4.5)

and (4.2) is equivalent to
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(4.6)

(4.8)

T v T
i £ = -
min f 17 fl zl UDV b
Putting
T - ~T _ = N T = =
9] fl =g = gl , U zl =w = wl y, Vb=<c:= cl (4.7)
92 Y2 2
and
p=[s o],
o O
where S is non-singular, then (4.6) becomes
. T ~
min g g, g =w — S O] c, (4.9)
O O
and this is solved for any c such that
= 4.
Scl w, (4.10)
for which
AT~ T T
= + . .
e e 2222 WoW, (4.11)

T
02 is arbitrary and the solution for which b b is minimized is

called the minimal length solution and is a best linear

T T . .
unbiased estimate of B. Since b'b = ¢ ¢, this solution is
given by

c, =0 (4.12)

so that

Other solutions, such as the reduced parameter solution, can

, st = aiag (1/a,). (4.13)

readily be obtained via the SVD and this allows the decision on
the rank of X to be made in the most favourable circumstance.
(See for example, Hammarling, 1985, and the references given

there.)
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5. THE GENERAL GAUSS-MARKOV LINEAR MODEL
In this section we look at the general model
2
y = XB + e, eCN(0,0 W). (5.1)

When W is non-singular this is usually associated with the
weighted least-squares problem

min 6w Ye, &=9- % (5.2)

b

If we let F be any matrix for which

W= FFT (5.3)
and put
-1~ 2
r = F e so that rcN(0,0 I) (5.4)
then (5.2) becomes
T -1~ -1~
min r ¥, r =F ly - F le (5.5)

which is in the form of the standard problem (2.2), and so we
can solve (5.5) as before using the QR factorization and the
SVD. But this approach is numerically unstable if W is ill-
conditioned and (5.2) and (5.5) are not even defined if W is
singular. Adding in artificial noise is a completely
unsatisfactory numerical approach for circumventing this.

In place of (5.4) we can let r be any vector such that
Fr = & (5.6)

and rearrange (5.5) to give

T ~ ~
min r r, subject to: y = Xb + Fr. (5.7)

While being superficially a trivial rearrangement this has
the vital difference of not now requiring non-singularity of F
and hence of W. Notice that if

2 ~ 2
rcN(0,0°I) we still have eCN(O,c W)

(5.7) is called the generalized linear least-squares problem.
(Paige, 1978.) Tools for the reliable solution of (5.7) are
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the QR factorization, the SVD and the generalized singular
value decomposition (GSVD). In the next section we indicate
how the problem may be solved with the QR factorization and the
SVD and in the following section we define the GSVD and give
references to its computation and its use in solving (5.7).

6. SOLVING THE GENERALIZED LINEAR LEAST-SQUARES PROBLEM

Here we consider the solution of the problem

T ~ ~
min r r, subject to: y = Xb + Fr (6.1)

using the QR factorization of (3.1). Denote the QR

factorization of X by

X = R 6.2
X Qx % ( )
O
and put
Y=z = [z Q = (0, 9, (6.3)
Qxy B - 1 ' *x 1 =2 -
so that (6.1) becomes
. T . - T -
min r r, subject to: z = Rx b + QlE‘ (6.4)
T
0
o} O, F

If § does not have full rank we can proceed to compute the
SVD of RX, otherwise for any r we can determine b as the
solution of the upper triangular equations
Rb =z - (QF) (6.5)
X 1 17t .

so that (6.4) becomes

min rTr, subject to: 22 = (QgEﬁr (6.6)

T
If we now denote the QR factorization of F Q2 as

FTQz I (6.7)
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and put
Q X = = (6 8)
F P p] M

then (6.6) becomes

. T . T
min p ' p, subject to: z, =R p_. (6.9)
2 F 1l
If RF does not have full rank we can proceed to compute its
SVD, otherwise we can solve the lower triangular system

T . .
RFpl =z, for Py and hence p is given by

T
= = 6.
RFpl z,; P, 0 (6.10)
so that
rTr = ot =
PiP1r ¥ = 9 Py
O
and b is given from (6.5). Details on this type of approach to

the solution of (6.1) are given in Paige (1978, 1979a), error
and perturbation analysis in Paige (1979b) and some statistical
analysis in Kourouklis and Paige (1981l). Further details on
the SVD approach are given in Hammarling, Long and Martin
(1983) .

7. THE GENERALIZED SINGULAR VALUE DECOMPOSITION

To give a gentle introduction to the GSVD we suggest a
generalization ofhthe OR factorization of the single matrix to
the matrix pair (X,F). We define the generalized OR
factorization as

> T T
X = R = 7.1
2 <| " % T Relp ¢ )
9)
where Qx and QF are orthogonal and Rx and RF are upper
triangular. If F is non-singular we find that
-1a -1

F X = QF RF Rx ’ (7.2)



452 HAMMARLING

. . . . -1z
which is the QR factorization of F "X, the data matrix in (5.5).
(7.1) gives all the information in (7.2) without relying on
invertibility of F and without requiring the numerically

damaging step of computing F_li. Applying this to (6.1) and
putting

Ta B T -

Qxy =z = 2| QFr =P = [py| s RF = Rll R12 (7.3)
_22_ p2 O R2 5
we get
. T . =
min p p, subject to: =z = RX b + RFp (7.4)

¢}

and if Rx and R22 are of full rank we solve (7.4) as

T T
RyPy = 2,7 P) =0, Rb =12 - Ro.p , rr=pp). (7.5)

There are variations in the way one can define the GSVD, but
the appropriate form for the generalized linear least-squares
problem (Paige, 1985) is to define the generalized SVD for

the matrix pair (ﬁ,F) as
~ - . - T . e o -— T
X =09 R I O Oof Vv, F=29 R o o o u,

o O C o O O s O

ho O O O 0O I (7.6)

where Q, U and V are orthogonal, R is a non-singular upper
triangular matrix and C and S are diagonal with

2 2
c®+s8°=1, ¢, >0, s, >o0.
1 1

We can choose the diagonal elements of C, the ci, to be in

descending order, in which case the diagonal elements of S are
of course in ascending order. The pairs (ci,si) are called the

generalized singular values of (X,F).
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If F is non-singular then

Fix=u sl o v, (7.7)

(0] (0]

which is the SVD of F 'X, and

(or) [s% O or) T,

1]

X% = (0R) [cz Sl r)Y, FET
[_o 0 0 I (7.8)

so that (QR) is the congruence matrix that simultaneously

. . 2aT 2,2
diagonalizes XX  and FFT. The values (ci/si) are the non-zero
eigenvalues of the generalized symmetric eigenvalue problem

A~ T
XX"Z = AFF Z.

For background on the GSVD the reader is strongly recommended
to consult Van Loan (1976) and Paige and Saunders (1981).

THE GSVD can readily be applied to (6.1) to yield the solution
of the generalized linear least-squares problem and just as the
SVD is a valuable tool for the solution and analysis of the
standard linear least-squares problem, so the GSVD plays the
same role for the generalized problem as is deomstrated in
Paige (1985). Stable numerical methods are emerging for
computing the GSVD, (Stewart, 1983; Van Loan, 1984; Paige,
1984) , the last of these, being based on implicit

Kogbetliantz approach, has potential for systolic
implementation (Brent, Luk, and Van Loan, 1983.)

8. CONCLUSION

We have discussed some of the numerical tools that are
necessary for the reliable solution of the general Gauss-Markov
linear model and have given references to the details necessary
to implement this method. The crux of such methods is the use
of orthogonal transformations, which are numerically stable
(for example, Wilkinson, 1965), and the avoidance of the
numerically damaging steps of forming normal matrices of the

oTe . . .
form X X and of matrix inversion.
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The Kalman filter can be viewed as a generalized least-
squares problem and the ideas here form the basis of reliable
and efficient methods for the numerical solution of the Kalman
filter problem. (Hammarling, 1985.)
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