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INTRODUCTION

In this contribution we consider the discrete linear Kalman filtering problem.
We present a short historical perspective of the Kalman filtering problem
covering the last 25 years starting with the Kalman paper of 1960. We aim to
show what has been achieved and finish by indicating what currently is
required for the efficient and reliable numerical solution of the problem.

While the material is not new, the numerical considerations may not be
familjar to the control community and so we use these as motivation for the
developments. The more recent work of Paige and others does not seem to be
well known or its utility fully appreciated, even in the numerical community.
Certainly quality software for the Kalman filtering problem has yet to appear
and some work is necessary to get to this stage.

We consider the model

]
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x, = AX +u E(uk) =0, E(ukuk)
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k k"k-1 k (1.1)

T
Y = Ckxk + Vi E(uk) =0, E(Vkvk) = Vk

where X is the n element vector of state variables, yk the m element vector

of measured, or observed, variables, u, is the vector of process noise and v

k k

the vector of measurement noise. uy and v, are usually assumed to come from a

normal distribution. This simple form is quite sufficient for our purposes,
but we note that no additional complication ensues if control variables are
included in the model. We hope that our use of uy to denote the process noise

rather than the control does not cause too much disturbance to the reader.
The problem we wish to consider is a particular case of the Wiener filtering
problem; given observations Yoo Yqs =oes Yi find the best linear unbiased
estimate, ﬁk, of x, . Additional statistical information such as E(Xkﬁg) is

k
also frequently required.

Although we shall only look at the filtering problem, the techniques can
usually be readily extended to allow smoothing and prediction.
THE KALMAN FILTER

We now state, without proof, the solution given by Kalman (1960) to the



24

S. Hammarling

filtering problem. Background, proof and additional information can be found
in the Kalman paper. Since publication of the paper the problem of
determining ﬁk has become known generically as the Kalman filtering

problem.
Put

T T a oT %
E(xkxk) = X E(ykyk) = Yk and E(xkxk) = Xk. (2.1)

Then, to help see the reason for the definitions of X and Yk below, we note

k
that
X = AX A'+U  and Y - CXCl 4V . (2.2)
k kK k-1"%k k k kK k 'k k
Now define
: N = N T
x =A% X o=AaK A U (2.3)
and
§ —oxcliy K = % cly! (2.4)

k k'k 'k k’ k k'k'k °

(2.3) is called the time update, ik the predictor, or estimator, Xk the

predicted covariance matrix and K the Kalman gain matrix. Kalman showed that

k

Y e X (2.5)
and

ﬁk = ik + Kk(yk—C X ). (2.6)

(2.5) and (2.6) are called the measurement update and (2.6) is, of course, the
Kalman filter.

Because covariance matrices are recurred this is known as a covariance filter.

The matrix X;l is called an information matrix and a corresponding information

filter can also be developed.

NUMERICAL DIFFICULTIES WITH THE KALMAN FILTER

Implementing the Kalman filter directly from equations (2.5) and (2.6) can
give rise to severe numerical difficulties and in this section we indicate the
source of these difficulties. Firstly, there are several computations of the

form BTZB to be performed. To simplify matters let us take Z = I and consider

the computation of BTB. It is well established that, numerically, such
computations give rise to a loss of information (Golub, 1965; Hammarling,
1985). Consider the simple example where

B = 1 1 so that BTB = 1 1 .
0 € 1 1l+e?
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A perturbation of order e is required to change the rank of B, whereas it

requires only a perturbation of order e2? to change the rank of BTB. If ¢ is
above noise level, but e€? is below noise level then, in the presence of such

noise, while B has rank two, we cannot say whether BTB has rank one or two.

We lose important information in forming BTB whenever we are not close to
orthogonality and the situation gets worse the closer we are to rank
deficiency. We should bear in mind that in many applications, such as signal
processing, the data can have quite low accuracy. We shall mention another
example of the numerical danger of forming normal matrices in Section 4.

The second difficulty is in (2.5) where the matrix ?;1

be ill-conditioned or even singular, in which case the computation breaks down
completely. In particular if any stage is noise free then Yk is singular and

the common practice of adding in artifical process noise hardly seems a
satisfactory means of allowing the computation to proceed. It seems
aesthetically displeasing to have a computation whose numerical properties
deteriorate with better information.

is required, but ?k may

The developments in Kalman filtering discussed in subsequent sections have
occurred to try and avoid one or both of the above problems.

A consequence of these difficulties is that the computed X may not be

k
positive semi-definite, in which case one may obtain negative variances, or
correlations outside the range [-1,1].

Finally we note that poor scaling may exacerbate the above problems and it can
be very important to balance the system (1.1) before performing other
computations. This is an observation that is generally true of such system
models and it is important to consider balancing, even if subsequent
computations are numerically stable, otherwise a poorly scaled problem may be
transformed into a genuinely ill-conditioned problem (Parlett and Reinsch,
1971; Laub, 1979; Ward, 1981; Williams, 1985).

It seems to be not uncommon for control models to be poorly scaled, usually
because the units of measurement chosen for the variables give values of
widely different magnitudes.

THE CHOLESKY AND QR FACTORIZATION

In this section we briefly discuss two important factorizations, namely the
Cholesky and QR factorizations. Both these factorizations can be computed by
numerically stable methods (see for example Golub and Van Loan, 1983) and
reliable numerical software is readily available for both factorizations
(Dongarra et al, 1979; IMSL; NAG), so we shall not discuss the algorithmic
details here.

The Cholesky factorization of a symmetric positive semi-definite matrix X
is given by

X =5'S, (4.1)
where S is an upper triangular matrix, which can be chosen to have non-
negative diagonal elements, called the Cholesky factor of X. In the control
literature S is often called a square root of X.

If B is an m by n matrix with m 2 n then the QR factorization of B is given by
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B -Q [I{] , (4.2)
0

where Q is an m by m orthogonal matrix and R is an n by n upper triangular
matrix, which again can be chosen to have non-negative diagonal elements. Now
from (4.2)

B'B - (RT O)JQ[R]:R% (4.3)
0

and hence R is the Cholesky factor of the matrix BTB. Thus the QR

factorization allows us to avoid forming the matrix BTB, we can obtain the
Cholesky factor by performing numerically stable operations directly on B.

To illustrate this let us consider the linear least squares problem given
by

minimize eTe, where b = Bx + e, (4.4)
B being an m by n matrix of observations and b an m element vector of
observations of the dependent variable. If B has full rank then x is the
solution of the normal equations

B'Bx = BTb. (4.5)

If we find the Cholesky factorization of BTB these equations become

RTRx = BTb

which can be solved by firstly using forward substitution to solve the lower
triangular equations

Rz = BTb (4.6)

for z, then using backward substitution to solve the upper triangular
equations

Rx = z (4.7)

for x. If instead we find the QR factorization of B and put

QTe =r = r and QTb =c = oH (4.8)
) 2

then, since eTe = rTr, (4.4) becomes
e T
minimize r'r, where ¢ = [ R ] X +r (4.9)
0
which gives

¢y = Rx + ry and cC, =T,.
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Since Ty is fixed rTr is minimized by the choice r, = 0. Thus we can obtain x

as the solution of the upper triangular equations

Rx = Sy (4.10)
for which
T T
ee =r,r,. (4.11)

(Golub, 1965; Golub and Van Loan, 1983, Chapter 6.) Thus, we can solve the
least squares problem without having to take the numerically damaging step of

forming BTB. Further details and references, including discussion of the rank
deficient case and the singular value decomposition, which is an important
factorization for analysing such problems, can be found in Golub and Van Loan
(1983) and Hammarling (1985).

THE SQUARE ROOT FILTER

The use of the QR factorization is the basis of the so called square root
filtering methods, in which Cholesky factors are recurred in place of the
corresponding covariance or information matrices. We illustrate the approach
by considering the square root filter corresponding to the Kalman filter of
equations (2.3) - (2.6).

Let the Cholesky factorizations of £

ko1’ Uk and Vk be

§ U =066, and V, = HWH (5.1)

o AT
et = Pk1k-1r Yk = B8y k = WA

and, as before, let

-~
X A x

k k"k-1"

i

If we let Bk denote

T
By = [gk—l Ak}
Oy

then from the second of (2.3) we see that

B =9 [5 | (5.4)
0



28

S. Hammarling

where Qk is orthogonal, then

~ ~T~
X = S5 (5.5)

and S, is the Cholesky factor of X

k k*
Now let the Cholesky factorization of Yk be

~ -\,T»\.
Yk = Tka (5.6)
and put
~_T =~
Me = T Gy (5-7)

Then from the first of (2.4) we have

~ T~ T =« ~T\T
Th = (1 Ge)’) HkT]
Skck

and from (2.5) we have
T~

ATa T
5.5k = S5k + MM,

so that, if we let Fk and Zk denote

F, = (NHkT 0 ] and  z, - [Tk Mk] , (5.8)
S8 Sk 0 ék

FF =272 (5.9)
and hence Zk is the Cholesky factor of FiFk. The QR factorization of Fk must
therefore be of the form
F = P (Tk bAak] S (5.10)
0 Sk

where Pk is orthogonal. Finally, corresponding to (2.6) we now find that

X =% +Md (5.11)
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where dk is the solution of the lower triangular system of equations
g, - C % (5.12
k% = Yk T YKk 5-12)
In summary, for this square root filter, the computation proceeds as follows:

1) Compute X, from (5.2) and S, via the QR factorization of B . These give

k k k
the time update corresponding to (2.3).
thus giving T

2) Form Fk and compute Z, via the QR factorization of F

Mk and Sk'

k k’ k’

3) Compute §k from (5.12) and (5.11). The computation of §k and ﬁk is the

measurement update corresponding to (2.5) and (2.6) and the computation
of Tk and Mk corresponds to (2.4).

Sk’ Tk and Sk are the Cholesky factors of Xk’ Yk and Xk respectively.

We should note that the orthogonal matrices Qk and P, in the QR factorizations

k
(5.4) and (5.10) are not required and, by using plane rotations (Golub and Van
Loan, 1983, sections 3.4 and 12.6), it is possible to take advantage of the
special form of Fk in computing its QR factorization. We also note that Gk

and Hk are often known, or can be obtained via QR factorizations, without the

need to form Uk and Vk explicitly.
The square root filter seems first to have been suggested by Potter in 1964
and reviews of these methods can be found in Kaminski, Bryson and Schmidt,
1971 and in Bierman, 1977.

The method, as presented above, still requires that ¥ be nonsingular since T

k
has been assumed to be non-singular and this is the normal assumption, but by
considering a least squares solution of (5.12) this condition can be relaxed.
The implementation of the square root filter using this approach is described
by Kourouklis, 1977, in a, sadly, unpublished Master's thesis. There does seem

k

to be some danger of loss of information in the computation of M;I(‘dk in (5.11).

- 2 T s AT .
We also have to explicilty form the products Sk—lAk and Ska in Bk and Fk

respectively. It is not clear whether or not this is numerically significant.
In the next section we present the Kalman filter as a standard least squares
problem and this allows a clearer view of the numerical properties.

THE KALMAN FILTER AS A LEAST SQUARES PROBLEM

Let us assume that the initial estimate 20 is known so that

Xy = X + Ug- (6.1)
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Then for t = 0, 1, ..., k equations (1.1) give
Xy = XO + g y0 = COXO Vs
x1:A1x0+u1, yI:C1x1+v1,
X, = A X + u

k = "k k-1 k’

which can be written as

bk = Bkzk + ey (6.2)
where
b = B (1 0 o o ) -7 -7
K= X, s K = - . s 2y T 3 >oe = ug
Yo C() 0 0 0 X, Yy
0 A, T 0 . 0 0 : u1
¥y 0 C1 0 0 0 X vy
0 0 A2 -1 . 0 0 :
: u
V-1 0 0 Ak -I \vk )
0 0 0 0 ee 0 C
\ k
\ i,
If we make the assumption that
T T . . T
E(uiuj) = E(Vivj) =0, 1i#j, E(uivj) =0 (6.3)
and put
W, - E(e el (6.4)
k k 'k °
then from (1.1) and (6.2) we see that
Wk = U0 0 e 0 0 . (6.5)
0 VO . 0 0
0 0 Uk 0
0 0 . 0 V

Duncan and Horn (1972) showed that the Kalman filtering problem is equivalent
to determining the component )’Ek of the solution Qk to the weighted least
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squares problem

L. T -1 A~
minimize ekwk e, where bk = B2 + e (6.6)

The covariance filter of Kalman corresponds to updating the solution to the
normal equations

T

-1
k'k

Kk = Biy Py (6.7)
from time t = k-1 to t = k.

If we let Rk denote the Cholesky factor of W, so that, by (5.1),

k

W, - RIR R, =G, o ... o0 o© (6.8)

=1
o

o o
o o
o @

and let

r = R;Tek, so that E(rkrE =1, (6.9)

then the weighted least squares problem (6.6) becomes

minimize ror where R_Tb - RT

Kk’ k "k T "k (6.10)

Bkzk + rk

and the covariance square root filter corresponds to updating the solution to
this least squares problem using the QR factorization.

We briefly indicate one method of updating the solution of (6.10) from time

t = k-1 to t = k. The matrix Rk—lBk—l is given by
-T ’ -T N
Rk—lBk—l = —GO (6.11)
~T
HO C0
-T T
64 G
-T
H1 C1
-T -T
G4, G
~T
Hy Cy
~T
L e 1% 1)

31
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and the upper triangular factor, Bk~1’ of the QR factorization of Raﬁlak—l has
the form
7 N\
R, - [D, E , (6.12)
D1 EZ
Dy
D2 B
N Dk—l/

where the diagonal blocks Di and ﬁi are upper triangular. At time step t = k

that changes will be P and so we are

we see that the only part of R kel

k-1
concerned with the transformation from

Dk—l to Dk-l Ek s
-T _T ~
Gk Ak —Gk 0 Dk
-T
Hk Ck 0

D D, E
k-1 A - kK 'k
T -T ~
Gk Ak —Gk 0 Zk Dk
-T -T
Hk Ck/ Hk Ck ) 0
Because —G;T is upper triangular, with judicious use of plane rotations we can
make Z, upper triangular and then take advantage of the upper triangular form

k ~
of Zk in computing Dk'
Having performed the factorization and applied the transformations to the
vector bk’ we then obtain Z,5 as in (4.10), as the solution of an upper

triangular system of equations of the form

B ik = % (6.13)
If we partition g as
Ek = [Ek b (6.14)
ek

then by considering the solution of (6.13) we see that %X

K is simply the

solution of the upper triangular equations
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ﬁk;?k = ek. (6.15)

Furthermore, since

we similarly find that

%, - (f)lff)k)‘l - ﬁ;lﬁ;T. (6.16)

(6.16) shows that this particular method corresponds to an information square
root filter.

This view of the problem seems to make the computational possibilities much
clearer and it is more obvious how to apply existing numerical methods and
error analyses to the problem, (see for example Lawson and Hanson, 1974). We
can also readily see how to smooth and predict, as well as filter and by
allowing a more general form for W we can easily relax conditions (6.3). This
computational approach was first suggested by Paige and Saunders (1977) and
full details and further discussion can be found in their paper.

The weighted least squares approach still relies on the existence of certain
inverses, indeed problem (6.6) is not defined when Wk is singular. In the next

section we give a formulation that does not rely on non-singularity.

THE GENERALIZED LEAST SQUARES PROBLEM

Consider the weighted least squares problem

minimize eTW—le, where b = Bz + e, (7.1)

let F be a matrix such that

W = FTF

and let r be a noise vector such that

FTr = e.

As in (6.10), when F is non-singular, we can express (7.1) as

T T

minimize rTr, where F-'b = F "Bz + r (7.2)

Paige (1978) noted that we can express this as the constrained least squares
problem

minimize rTr, subject to b = Bz + Fr. (7.3)

While superficially this is a trivial rearrangement of (7.2), it has the vital
difference of not now requiring non-singularity of F, and hence of W. Note
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that if

E(rrT) =TI then E(eeT) = W. (7.4)

(7.3) is called the generalized linear least squares problem.

To indicate how (7.3) might be solved, let the QR factorization of B be

B = Q [RB] , (7.5)
0

so that (7.3) becomes

minimize rTr, subject to ng = [RB] z + (FQB)Tr,
0

let the QR factorization of FQB be

FQp = QR (7.6)

and put

T _ T - -
QBb~c=[c1], QFr_p:[pl]’ RF—[R11 le . (7.7)
€2 P2 0 R,

(7.3) now becomes

minimize pr, subject to ¢ = RB z + Rgp (7.8)
0
so that
T T T

¢y = Rgz + RyyPp»  Cp = Ryppy + RooPy
Hence we choose py = 0 giving

RT P, = C R,z = ¢ (7.9)

2272 2’ B 1°

If R22 and RB are non-singular then these triangular equations are readily

solved for P, and z. Further details and analyses can be found in Paige

(1979b) and Kourouklis and Paige (1981). More recently Paige (1985) has given
an elegant analysis of the generalized least squares problem in terms of an
important modern tool called the generalized singular value decomposition (Van
Loan, 1976 and 1982; Paige and Saunders, 1981).

For the particular case of the Kalman filtering problem, much of the weighted
least squares approach carries over to the generalized least squares approach,
however there are still some questions to be answered. We can update the
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matrix B = B; as described in the previous section, but it is not clear how
best to update F = Fk. If we take the natural choice Fk = Rk of (6.8) then it

does not appear possible to prevent R_ in (7.6) from being full in its upper

F
triangular part. So there is still some work to be done here to investigate
efficient, but stable, methods of updating from time step t = k-1 to t = k.
Potential tools for achieving this are discussed in Paige (1978).

CONCLUSION

We have given a historical view of the numerical solution of the Kalman
filtering problem, highlighting where the numerical difficulties occur and
indicating which tools are useful in overcoming these difficulties. The
generalized least squares approach is numerically the most reliable and both
perturbation and rounding error analyses have been given by Paige (1979a).
There remains some work to be done in applying this approach to the Kalman
filtering problem, but it is to be hoped that the near future will see the
emergence of reliable algorithms and quality software implementing these
algorithms for this important problem.
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