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We discuss the numerical solution of the Lyapunov equation

AHX + XA = - C , C = CH

and propose a variant of the Bartds-Stewart algorithm that allows the Cholesky
factor of X to be found, without first finding X, when A is stable and C is non-negative
definite.

1. Introduction

LET A be a given n by n matrix with eigenvalues Xlf X2,. .., A,, let AT denote the
transpose of A and AH the complex conjugate of AT and let C be a given Hermitian
matrix. Then the equation

AHX + XA = - C , C = CH (1.1)

is called the continuous-time Lyapunov equation and is of interest in a number of
areas of control theory such as optimal control and stability (Barnett, 1975; Barnett
& Storey, 1968).

The equation has a unique Hermitian solution, X, if and only if Xt + X~j ^ 0 for all i
and j (Barnett, 1975). In particular if every Xt has a negative real part, so that A is
stable, and if C is non-negative definite then X is also non-negative definite (Snyders
& Zakai, 1970; Givens, 1961; Gantmacher, 1959). In this case, since X is non-
negative definite, it can be factorized as

X = UHU, (1.2)

where U is an upper triangular matrix with real non-negative diagonal elements, this
being the Cholesky factorization of X (Wilkinson, 1965).

The Cholesky factors of X can readily be used in place of X and in many situations
they will be far more useful than X itself. Furthermore, when X is non-singular, if
||X||2 denotes the spectral norm of X and c2(X) denotes the condition number of X
with respect to inversion given by

c2(X) = ||X||2 | |X-1 | |2, (1.3)

then we have the well-known result that

c2(X) = cf(U) (1.4)
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and hence X may be considerably more ill-conditioned with respect to inversion than
U. If we could solve Equation (1.1) directly for U, then by using U in place of X we
might hope to avoid the loss of accuracy associated with the squaring of the condition
number in Equation (1.4). Whether or not this hope can be realized will depend upon
the application.

A number of methods for solving the Lyapunov equation have appeared in the
literature (Rothschild & Jameson, 1970; Hagander, 1972; Pace & Bamett, 1972;
Belanger & McGillivray, 1976; Hoskinser al., 1977; Galeone & Peluso, 1979; Sima,
1980). One of the most effective methods from a numerical point of view is an
algorithm due to Bartels & Stewart (1972) (see also Belanger & McGillivray, 1976,
and Sima, 1980). The Bartels-Stewart algorithm can be used to solve the more
general Sylvester equation

BX + XA = - C , (1.5)

where C is not necessarily Hermitian, and their method for this equation has been
further refined by Golub et al. (1979). Here we shall only consider the special case of
Equation (1.1), this case having also been discussed in the Bartels & Stewart paper.

We first describe the Bartels-Stewart algorithm, then we discuss the non-negative
definite case and propose a variant of the algorithm that allows the Cholesky factor U
to be obtained directly without first finding X. The case where A is normal, the
Kronecker product form of the Lyapunov equation and the sensitivity to
perturbations of the Lyapunov equation are discussed. Finally, mention is made of
the discrete-time Lyapunov equation and of the implicit Lyapunov equation.

2. The Bartels—Stewart Algorithm

The Schur factorization of a square matrix A is given by

A = QSQP, (2.1)

where Q is unitary and S is upper triangular (Wilkinson, 1965). Since S is similar to A
the diagonal elements of S are the eigenvalues A1? k2,.. ., A,. This factorization is
important because it can be obtained by numerically stable methods; first A is
reduced to upper Hessenberg form by means of Householder transformations and
then the QR-algorithm is applied to reduce the Hessenberg form to S (Wilkinson,
1965), the transformation matrices being accumulated at each step to give Q.

If we now put

C = Q"CQ and X = Q"XQ (2.2)

then Equation (1.1) becomes

SHX>XS = - C (2.3)

and these equations can readily be solved by a process of forward substitution, as we
now demonstrate. Partition S, C and X as

j1
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where c u and x n are scalars and s, c and x are (n-1) element vectors. Then
Equation (2.3) gives the three equations

( A I + X J X H = - c n

and hence

(2.6)

(2.7)

Once x u has been found from Equation (2.5), Equation (2.6) can be solved, by
forward substitution, for x and then Equation (2.7) is of the same form as (2.3), but of
order (n — 1). The condition X, + Aj ^ 0 ensures that Equations (2.5) and (2.6) have
unique solutions.

It should be noted that although the matrix C given by

is Hermitian, when C is positive definite the matrix C is not necessarily positive
definite so that Xt is positive definite by virtue of being a principal minor of X and not
by virtue of being a solution of Equation (2.7). Such an example is given by

- 0 5
0
0

1
-0-5

0

1
- 2
- 0 5

S = | 0 - 0 5 - 2 ), C =

for which we find that

x n = 1, x =

and

so that although C is positive definite C is indefinite.
It is aesthetically displeasing that positive definiteness of C is not guaranteed. We

shall show in Section 5 that this deficiency is not present in the alternative approach
of finding the Cholesky factor of X.

When A and C are both real then X will also be real and it is possible to work
entirely in real arithmetic by replacing (2.1) with the real Schur factorization

A = QSQT, (2.8)

where now Q is orthogonal and S is block upper triangular with 1 by 1 and 2 by 2
blocks, the eigenvalues of a 2 by 2 block being a complex conjugate pair (Wilkinson,
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1965). For this factorization Equations (2.5), (2.6) and (2.7) become

sliXn+XuSn = - c n (2.9)

Sjx + xsn = - c - s x u (2.10)

SIX, +X tS, = - d -(sxT + xsT), (2.11)

where s n , x n and c u are either scalars or 2 by 2 matrices and s, x and c are either
vectors or matrices with two columns. In the 2 by 2 case Equation (2.9) defines three
equations in the unknown elements of jcn and Equation (2.10) can then be solved by
forward substitution, a row of x being found at each step.

3. The Non-negative Definite Case

The case where X is non-negative definite generally arises when A is stable, that is A
has eigenvalues with negative real parts, and when C is of the form

C = BHB (3.1)

where B is an m by n matrix. For example, when A is stable, the "reachability
Grammian" given by

•"["(Be"
Jo

satisfies the Lyapunov equation (see for instance Snyders & Zakai, 1970)

AHH + XA = -BHB. (3.2)

If we can find the Cholesky factor U via B rather than BHB then we have added
incentive to use this approach, since once again we should then hope to avoid the loss
of accuracy associated with squaring the condition number. For example, consider
the case where

A — I and B - ( J J). (3.3)

Since

B"B = (l , l 2
\1 1+e2

we see that

+e2} (34)

Because B is upper triangular we also have that

; :>

Whereas perturbations of order e are required to destroy the ranks of B and U, it only
requires perturbations of order e2 to destroy the ranks of BHB and X. If e2 is smaller
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than the machine accuracy then we cannot even represent X on the machine as a full
rank matrix.

We propose a variant of the Bartels-Stewart algorithm designed to allow the
Cholesky factor U to be obtained directly. We shall assume that A is stable and that C
is positive definite, and since we wish to be able to avoid the need to form BHB
explicitly, we shall also assume that C is of the form of Equation (3.1). This is no real
loss of generality since we can always take B to be the Cholesky factor of C. The
assumptions imply that B is of full rank n and m ^ n. This simplifies the description of
the method, but it should be noted that the method can easily be modified to allow
these restrictions to be removed. We wish to solve the Lyapunov equation in the form

AH(UHU)+(UHU)A = -BHB, (3.6)

for U, and first we show how we can transform this to a reduced equation, which is
equivalent to Equation (2.3), of the form

SH(0HU)+(0HC)S = -ftHft, (3.7)

where U and ft are upper triangular.

4. Transforming to Reduced Cholesky Form

The tool that enables us to avoid forming matrices of the form BHB is the QU-
factorization (frequently called the QR-factorization, but not to be confused with
the QR-algorithm). For an m by n matrix B of full rank with m ̂  n the QU-
factorization is given by

B = p ( o ) (41)

where P is an m by m unitary matrix and R is an n by n non-singular upper triangular
matrix. The factorization can be chosen so that R has positive diagonal elements,
although this is not usually important. The QU-factorization may be obtained in a
numerically stable manner by means, for example, of Householder transformations
and is in common use for solving linear least squares problems (Golub, 1965),
because it avoids the need to form the normal, or Gram, matrix BHB. The matrix C of
Equation (3.1) can now be expressed as

C = RHR (4.2)

so that R is the Cholesky factor of C and hence, as with Equation (1.4),

c2(Q-cKR). (4.3)

With the factorization of Equation (2.1) Equations (2.2) now become

C = (RQ)"(RQ) and X = (UQf(UQ). (4.4)

If we let the QU-factorization of RQ be given by

RQ = Pft, (4.5)
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where P is unitary, and ft is upper triangular, then

C = ftHft (4.6)

so that ft is the Cholesky factor of C and is the matrix required in Equation (3.7). If
we can solve Equation (3.7) for U then, by comparison with Equation (2.3), 0 will be
the Cholesky factor of % so that

X = UHU. (4.7)

Once U has been found we can obtain the required Cholesky factor U by performing
a QU-factorization of the matrix UQ".

We note that we can also obtain the Cholesky factor ft by forming BQ and then
finding the QU-factorization of BQ, but this involves more multiplications when
m > 7n/6 and even when this is not true the difference is hardly significant. We note
also that when B does not have full rank then one or more diagonal elements of R will
be zero, and when m < n if we partition B as

B = (BS),

where 6 is an m by m matrix with the QU-factorization

6 = Pft,
then the Cholesky factor, R, of BHB is given by

'ft pHi
,0 0

5. Solving the Reduced Equation

We now turn to the solution of Equation (3.7) and partition U and ft as

From Equations (2.4), (4.6) and (4.7) we see that

(5.2)

and
*n = l"nl2. x=u11fi, X^ufiK + UrU!. (5.3)

Substituting these into Equations (2.5), (2.6) and (2.7) gives

and

The true Cholesky factor has u11 real and positive so that if we make this choice and
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we put

(5.4)

then corresponding to Equations (2.5), (2.6) and (2.7) we have

(5.5)

(5.6)

(5.7)

Equations (5.5) and (5.6) enable us to obtain u n and u, and, as we shall show,
Equation (5.7) is of the same form as Equation (3.7), but of course of order (n — 1).
For Equation (5.7) to be of the same form as Equation (3.7) we have to establish
that the matrix Z given by

Z = R?R1+rfH+(vuH + GvH) (5.8)

is positive definite. This is an important distinction between Equation (2.7) and
Equation (5.7). Let us put

a = r u / u n and y = r -au . (5.9)

Using Equation (5.5) we note that

|«| = [-(A!+!,)]*. (5.10)

Now, from Equations (5.4) and (5.6)

v = — ar — u n s — ̂ u + UnS = — af — Xlu
so that

vuH + uvH = — <xfuH — auf" — /^uu" — Iluuli

= -r?H + yyH

and hence
Z = R?R l+yyH (5.11)

Since R"Rt is positive definite Z must also be positive definite and hence Z has a
Cholesky factorization, say

Z = ftHR, (5.12)

where ft is a non-singular upper triangular matrix. As we shall illustrate below ft can
readily be obtained from Rt without the need to form Z. Assuming that we can obtain
ft, Equations (5.5H5.7) which allow us to determine U can be summarized as

Sn- l fn l /C-Wi + Ii)]* (5-13)
(S? + A1I)u = - a f - u l l s (5.14)

SftU5tU1)+(U7U1)S1=-ftHft (5.15)
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where

ftHft = R?R, + yyH, y = r-ctu, a^r^/u^. (5.16)

The problem of updating the Cholesky factorization of a matrix when the matrix is
subject to a rank-one change and the equivalent problem of updating the QU-
factorization of a matrix when a row is added to, or removed from, the matrix
appears in a number of applications such as least squares, linear programming and
non-linear optimization, and the techniques have received considerable attention in
recent years (Golub, 1965; Lawson & Hanson, 1974; Saunders, 1972; Gill & Murray,
1974; GUI et al., 1974; Gill & Murray, 1977; Paige, 1980; Stewart, 1979; Dongarra
et al., 1979).

Here we have a straightforward updating, as opposed to downdating, problem
since we are making a strict rank-one addition to R"Ri- If we let F be the matrix

then
FHF = R?R1+yyH = R'HR (5.18)

and if we perform a QU-factorization of F then the upper triangular matrix will be the
required Cholesky factor ft since, if

F = Pl I, (5.19)

where P is orthogonal then
FHF = ftHft

as required. The form of F is typified by the case where n = 6 as

Ix x x x x\
x x x x

„ x x x
r =

x x
x

\x x x x xj
and F may be transformed to upper triangular form by a sequence of plane rotations
in planes (1, n), (2, n), . . . . ( n -1 , n), where the rotation in the (i, n) plane is chosen to
annihilate the element in the (n, i) position of F.

We note that although we have assumed B, and hence ft, to be of full rank and that
m^n, these restrictions can in fact be relaxed by defining a as

a = sign(r l l)[-(>l1+I1)]i, sign (a) = J a/\a\, a # 0 (5.20)fa/ |a | , a # 0
l l , a = 0,

which merely extends the definition of a to allow for the case where fj t = 0.
Equations (5.13)—(5.16) can now be used to determine 0 .

This concludes the description of the basic method of obtaining the Cholesky factor
ofX.
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6. The Real Non-oegative Definite Case

We noted at the end of Section 2 that when A and C are both real then we can work
entirely in real arithmetic by using the factorization of Equation (2.8). For this case,
corresponding to Equations (2.9)-(2.11), Equations (5.13H516) are replaced by the
equations

T T Ti«n)sn = -rl,ru (6.1)
iS11ui-1

1) = - r a - s u I 1 (6.2)
ST(UTUt)+(UTU1)S1 = -ftTfi (6.3)

where
r f i 7 y = r-uaT, a = fllu;l

l. (6.4)

Sn, u u and r u are either scalars or two by two matrices and s, u and r are either
vectors or matrices with two columns. Of course, in the scalar case "i1s11i3f1

1 = s u .
The matrix F of Equation (5.17) is replaced by

(6.5)

and in the two by two case yT contains two rows so that there are two subdiagonal
elements per column to be annihilated in restoring F to upper triangular form.

There are some computational pitfalls to be avoided in the two by two case and the
remainder of this section is devoted to the tedious but important details needed for
this case. In the scalar case Equation (6.1) gives

"u = ? i i /(-25ii) i . scalar case, (6.6)

but in the two by two case some care is needed because we naturally wish to avoid
forming rjjFu explicitly and we wish to avoid finding u n from x n = uJiUn. The
most satisfactory solution seems to be to regard Equation (6.1) as a special case of
Equation (3.6) and hence reduce Equation (6.1) to the form of Equation (3.7). This
approach also allows us to handle Equation (6.2) in a satisfactory manner, even when
u u is singular.

The reduction of s n to upper triangular form can be achieved with a single plane
rotation. If we denote s n as

let X be an eigenvalue of s u and let QH be the plane rotation matrix that annihilates
the second element of the vector z given by

.-(••;')

then the matrix Ji t = Q"^ 10 will be upper triangular. Since this case corresponds to
a complex conjugate pair of eigenvalues, s n will have the form

*n = (o D, where 0 = A or 0 = X. (6.9)
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Now let the QU-factorizations of u l t Q and r n Q be

Ui x Q = T^!! and rllQ = Ppll, (6.10)

where T and P are unitary and

S | 1 = ( o Vl)' Pll=(PQ P2\ ( 6 U )

\ 3/ \ " r 3/

T and P can be chosen so that D,, U3, ps and p 3 are real and non-negative and for
simplicity we shall assume this to be the case. Then with the transformations of
Equations (6.9) and (6.10) Equation (6.1) becomes

(6.12)

from which we find that

ft1 (6.13)
(6.14)

(6.15)

Having found 0j t we then obtain ut t from the QU-factorization of v^ x 0" - Choosing
the diagonal elements of u u to be real ensures a priori that the remaining element is
also real.

We now turn our attention to Equation (6.2) and in particular to the computation
°f ("i I si I "iV) anc* OL. First we note that

and a = P(p11v;l
i)Vi. (6.16)

Now

A ) (6-17)
p

and
r* (Pi-

(6.18)

A bit of algebraic manipulation shows that

T=d(iv2-p1) (6.19)
and hence

rp
(6.20)

where

<5 = y/v3, r\ = p3/u3) y = —ct<5. (6.21)

In our NPL routine for solving the non-negative definite Lyapunov equation we
choose 8 = 0 and rj = a whenever y = 0 which allows us to handle the case where
y = 0 and p3 = 0 quite satisfactorily and we then have for any y and p3 that

|<5|<a, 0 < 7 7 < a and |y| < a2. (6.22)
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Having found vuSud^i and PnV^1 we can then recover WnSnuf/ and a from
Equation (6.16).

Although, as we have shown, GuSuU^1 and a are rather special it is imperative
that they are computed as described above in order to avoid the serious effects of
rounding errors when u u is ill-conditioned. (A discussion of such effects in a rather
different context is given in Hammarling & Wilkinson, 1980.)

An example of a Lyapunov equation which gives rise to an almost singular two by
two matrix u u is given by

,4 = 1 „ „ I, e > 0 and small,

for which

7. The Case Where A is Normal

If A is a normal matrix so that

AHA = AAH (7.1)

then considerable simplification takes place because the Schur faciorization of
Equation (2.1) can be replaced by the spectral factorization (Wilkinson, 1965), given
by

A = QDQ", (7.2)

where D is the diagonal matrix

"lt 0 . . . 0"
0 X2 ... 0

.0 0 . . .

For the Bartels-Stewart algorithm Equations (2.5)-(2.7) become

xn=-cll/{Xl+X1) (7.4)

(D1+>l1I)x = - c (7.5)

D?X1 + X l D 1 = - C l . (7.6)
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Equation (7.5) gives immediately that

and hence from Equations (7.4) and (7.6) the elements of X are given by

jj £ u^ I i \ (7 7)

For the modified algorithm designed to determine 0 Equations (5.13)—(5.16) give

"uHFul /C-Wi + Ii)]1 (7.8)
«.i=-(«'»)/(*«+ *i), «=2 ,3 , . . . , n (7.9)

D?(U?U,)+(U7U,)D1=-ftHft, (7.10)
where ftHft is as given by Equation (5.16) and so we still have to update Ri to give ft
at each step.

8. The Kroaecker Product Form of the Lyapunov Equation

Let A ® B denote the Kronecker product of an m by n matrix A with a matrix B
given by

fl12B • • • ^ l f

R \

(8.1)

let v̂  denote thejth column of a matrix V containing n columns and let v = vec (V) be
defined as

v = v e c ( V ) = | Y.2 ). (8.2)

Note that amongst the properties satisfied by Kronecker products are the following
(Barnett, 1975):

(A®BXC®D)=AC®BD, (A ® Bf = AH ® BH,

A®(B + Q = A®B + A®C, (A+B)®C = A ® C + B®C.

If Ax = Xx and By = /?y then

(A®BXx®y) = Aflx®y), (I ® A + B® IXx ® y) = (A + ^ (x® y).

Note that it follows from the first of these two results that

If we now consider the jth column of the Lyapunov equation

AHX + XA = - C (8.3)



SOLUTION OF THE LYAPUNOV EQUATION 315

we get

and hence the solution of Equation (8.3) satisfies the equation

(I®AH + AT®I)* = - S . (8-4)

This is the Kronecker product form of the Lyapunov equation. Putting

K = I®AH + AT®I (8.5)

the matrix K is given by

aBll

\ (8.6)

so that although K is an n1 by n1 matrix it has a rather special form. Now let Qc

denote the matrix whose elements are the complex conjugates of those of Q and
consider the matrix N given by

N = QC®Q, (8.7)

where Q is the matrix of Equation (2.1). For this matrix

NH = QT ® QH and NHN = (QTQC) ® (Q"Q) = I ® I = I

so that N is unitary. We also have that

NHKN = (QT ® QH)a ® AH + AT ® IXQC ® Q)
= QTQC ® QHAHQ + QTATQC ® QHQ
= I®S H +S T ®I . (8.8)

Putting
L = I ® S H + S T ® I (8.9)

we can see that
U = - ? (8.10)

is the Kronecker product form of the Lyapunov Equation (2.3). The matrix L is lower
triangular and is given by

L =

H + >11I 0 0 . . . 0
s l 2l SH + /12I 0 . . . 0
s13l s23l SH + A3I . . . 0 | (8.11)

\ slml

so that Equation (8.10) can be solved by block forward substitution, the7th step being
to solve the n by n lower triangular system

s2jX2-...-Sj-ljXj-u ; = 1 , 2 , . . . , n . (8 .12)
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Since X is symmetric we, in fact, need only compute the final (n —j + l) elements of x,,
the first (J— 1) elements having been obtained on previous steps.

This is the Kronecker product form of the Bartels-Stewart algorithm.

9. Sensitivity of the Solution of the Lyapunov Equation

Laub (1979, 1980) has given a measure for the sensitivity of the solution of the
Lyapunov equation to changes in the data for the case where A is a normal matrix. If
we consider just the case where A is perturbed and hence consider the equation

- C (9.1)

then

AHF + FA = -[EH(X + F)+(X + F)E] (9.2)

and with the factorization of Equation (2.1) this becomes

SHF + fS = - G , (9.3)
where

G = £H(X + F)+(X + F)E\ F = QHFQ, E = QHEQ. (9.4)

The spectral norm of G satisfies

||G||2 *S 2||£||2||X + F||2 = 2||E||2||X + F1|2. (9.5)
Now, in the case where A is normal, Equation (7.7) gives

7y=-9u/(X ( + A,), (9.6)
so that

2n> (mmax W/

and hence

IIFIMIX + FII, <S 2n» (max |AJ/min |I,+^)(| |E||j/ | |A||2). (9.7)

Thus we can regard the value

max U

as a condition number for this problem, which is essentially equivalent to the result
quoted by Laub.

Obtaining an equivalent result to Equation (9.7) when A is not normal seems
unlikely to be straightforward, but Golub et al. (1979) have given an analysis of the
sensitivity of the real Sylvester equation in terms of the Kronecker product and this
leads to a useful practical method of measuring the sensitivity. Here we give an
analysis only in terms of the Lyapunov equation.

If A is perturbed as in Equation (9.1) then
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and corresponding to Equation (9.1) we have

(K + GHx + f) = -C, G = I®E H + ET®I, f=vec(F). (9.8)

Using a standard result on the sensitivity of linear equations (see, for example,
Forsythe & Moler, 1967) this gives

(9-9)

so that denoting the Euclidean (Frobenius) norm of A by ||A||E we get

(2||K-1||2||A||2KI|E||2/1|A||2) (9.10)

and hence we can regard the value ||K~1||2||A||2 as a condition number for this
problem. This is essentially a special case of the result of Golub et al. (1979). To
obtain the above result we have used the inequality ||G||2 ^ 2||E||2, but it should be
noted that when E is complex this can be a substantial overestimate. For example
when

we find that G = 0 so that ||G||2 = 0, but ||E||2 = |e|.
In order to obtain a means of estimating ||K" '||2 we note that, since the matrix L of

Equation (8.9) is unitarily similar to K, we have

and hence

< (2||L-1||2||A||2XI|E||2/1|A||2). (9.11)

The value ||L~x || can be estimated, as ||z||2/||y||2, by solving the two sets of equations
LTy = b and Lz = y, where the vector b is chosen to promote as large a value of ||y||2
as possible using the technique described in Cline, Moler, Stewart & Wilkinson
(1979) (see also Dongarra et al, 1979; O'Leary, 1980). Although this estimate
requires about 2n3 multiplications this is not a great increase in cost relative to the
solution of the Lyapunov equation itself. The biggest disadvantage is the extra n2

storage locations needed for the estimator.
Note that when A is normal S is diagonal so that L is also diagonal with diagonal

elements (1, + Xj) and hence in this case

so that Equation (9.11) is consistent with Equation (9.7).
We also note that the matrix L will be ill-conditioned if the matrix A has one or

more eigenvalues close to the imaginary axis relative to any of the other eigenvalues
and from practical considerations one would expect this to be the case because A is
only just stable (Laub, 1979; Bucy, 1975). The matrix L will also be ill-conditioned if
A is close to a matrix with one or more eigenvalues close to the imaginary axis relative
to any of the other eigenvalues, but unless we investigate the sensitivity of the
eigenvalue* of A (Wilkinson, 1965), or estimate HL"1!!, such a matrix may not be easy
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to detect. For example, if we consider the case where A and C are given by

'-0-5 1 . . . 1

0 -0-5 . . . 1
A = C =

so that

then we find that

0 0 . . . -0-5,

A = S, C = C and X = X,

- 1 0 . . . 0N

1 - 1 . . . 0

1 1 . . . - 1 ,

and

\

As can be seen from the growth in the elements of x, the matrix (S^H-y^I) is very ill-
conditioned when n is not small (Wilkinson, 1977). To see that, despite appearances,
A is only just stable we note that the matrix (A + E), where

0

has a zero eigenvalue when e = 1/(4.3" 2).
The additional question of whether or not the Cholesky factor, U, of X is less

sensitive to perturbations than X itself also seems to be a difficult question to answer.
Comparing Equation (5.13) with (2.6) suggests that at worst U is no more sensitive to
perturbations in A than X and it is not difficult to construct examples where U is very
much less sensitive. For example, if we consider the case where

A =
-

then the solution of the equation ATX+XA = — BTB is

X--U1 l )
X~2s\l l+e)

and the Cholesky factor of X is

so that ||X||2 varies as e"1, but ||U||2 only varies as
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10. The Discrete-time Lyapunov Equation

Consider the continuous-time Lyapunov equation

A^X + XA! = - C , , C1 = C?. (10.1)

Suppose that (I —AJ"1 exists and that we define the matrix A as

A=( I -A 1 ) " 1 ( I + A1) (10.2)
so that

Under this transformation Equation (10.1) becomes

(A+I)'H(AH-I)X + X(A-IKA-I-I)-1 = - C j

which can be re-arranged to give

AHXA - X = - HA + lfCJA +1)

and putting
(10.3)

we have
AHXA-X = - C . (10.4)

This is the discrete-time Lyapunov equation and plays the corresponding role for
discrete-time systems as Equation (1.1) for continuous-time systems (Barnett, 1975).

If X{ is an eigenvalue of A and /?j the corresponding eigenvalue of Ax then

/?,) and ^ = (A,-1)/(A,+ 1) (10.5)

and it follows that Equation (10.4) has a unique Hermitian solution if and only if
fr + JjjitO for all i and;, that is A,Î  # 1 for all i and;. In particular, corresponding to
the case where At is stable and Cx is non-negative definite, if |AJ < 1 for all i, so that A
is convergent, and C is non-negative definite then X is also non-negative definite.

We note also that if the Schur factorization of A, is

A, = 05,0" (10.6)

then the Schur factorization of A is given by

QH. (10.7)

The numerical solution of the discrete-time Lyapunov equation follows similar lines
to that of the continuous-time equation and we give just a brief description of the
main results. We shall use the same notation as for the continuous-time equation.

From the Schur factorization of A and corresponding to Equation (2.3), Equation
(10.4) gives

SHXS-X = - C (10.8)

and hence corresponding to Equations (2.5)-(2.7) we have

] (10.9)
(10.10)
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S j X ^ - X , =-C1-x1 1ssH-[s(S5 lx)H + (S\Ix)S
H]. (10.11)

For the real Schur factorizarion of Equation (2.10) these equations are replaced by

*Ii*nSii-Xii = - c u (10.12)

Sjxs l l -x = - c - s x , 1 s u (10.13)
S J X ^ - X , = - C 1 - S J C U S T - [ S ( S T X ) T + ( S T X ) S T ] . (10.14)

For the positive definite case we assume that the eigenvalues of A are such that
|AJ < 1 for all i, so that A is convergent. Then with the substitutions of Equations
(5.2) and (5.3) and with some algebraic manipulation, Equations (10.9)—(10.11)
become

(10.15)
(/^S" — I)u = — acr — A tu ns , <x = f u / i i u (10.16)

SftU?U,)S1-U?U1=-ftHfc, (10.17)
where

ftHft = R?R1+yyH, y = affiu + UnS)-!^. (10.18)

For the real Schur factorization these equations can be replaced by

sIi("Ii»ii)sn-«Ti«ii = -'Ti'-ii (10.19)

Slu(uii5iiuri1)-u = -fa-s«Ti("iiSii«ri1). * = rliUu1 (10.20)

ST(UJU1)S1-UTU = -fiTft (10.21)
where

ftTft = RlRt + yyT, y = [fSlu+sulJ. (10.22)

In the scalar case Equation (10.22) can be replaced by Equation (10.18), with a = a,
I, = /lt and S" = Sj, but in the two by two case y consists of four columns rather
than the hoped-for two columns. It is an open question as to whether or not a matrix
y containing just two columns can be found.

As with the continuous-time case care is needed in the solution of Equations (10.19)
and (10.20). Here, corresponding to Equations (6.13)—(6.14), we have

Vl=Pl/a, « = [(l-|fl)(l + |fl)]l (10.23)
v2 = (ap2 + 0M)/ni-0)(l+/m (10-24)

where

and corresponding to Equation (6.21) we have

5 = fiy/vit r\ = p3/u3, y = - &y/v2. (10.26)

11. The Implicit Lyapunov Equation

Finally, we note that similar methods may be applied to the continuous-time
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implicit Lyapunov equation

AHXB + BHXA = - C , C = CH, (11.1)

where A and B are square. The solution of the more general implicit Sylvester
equation AXD + BXC = E is discussed in Golub et al. (1979) and in Epton (1980). It
can be shown that Equation (11.1) has a unique Hermitian solution, X, if and only if
A[+Xj ^ 0 for all i and /, where x, is an eigenvalue of the generalized eigenvalue
problem

Ax = ABx. (11.2)

When B is non-singular Equation (11.1) can be transformed into the explicit equation

(AB"1)HX + X(AB-1) = -B- H CB- 1 , (11.3)

but, as with the eigenvalue problem of Equation (11.2), for numerical stability it is
generally better to use the implicit form.

In place of the Schur factorization we use the Stewart factorization of A and B
(Stewart, 1972; Moler & Stewart, 1973) given by

A = QSZH, B = QTZH, (11.4)

where Q and Z are unitary and S and T are upper triangular. If we put

X = QHXQ and C = ZHCZ (11.5)

then Equation (11.1) becomes

SHXT+TwXS = - £ ( U 6 )

which corresponds to Equation (2.3) for the explicit Lyapunov equation. Partitioning
S and T as

(11.7)
L i /

then, corresponding to Equations (2.5)-(2.7), we get

SH f̂ Tp | 'I'Hv" O __ ^^ v fci"^ -1_ #c^^ .̂ _ / C v # ^ _I_ t v C \ /'"I*"ve -1- c v T \
i Ŵ | \ i ^r i 1 ^V1 Oi ^" ^^1 11 \ *~ ^^ / \^1 ~* 1-™ 1̂ / ~~ \ 1 "& "T* ) A X i I

(11.10)

and corresponding to Equations (5.13)—(5.16) for the positive definite case we get

SftUjfUJT, +T?(U5IU1)S1 = -(R?R, +yyH), (11.13)

where

y = ( ? ! ? - a, w)/]a|, v =

Notice that Equation (11.13) is still only a rank-one update.
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I am grateful to D. W. Martin, M. J. D. Powell and Hilary J. Symm who made a
number of helpful suggestions to improve the paper. Particular thanks go to P. B.
Kronheimer who programmed and tested the real continuous-time positive definite
case and offered a number of useful ideas and corrections.
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