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HOW TO LIVE WITHOUT COVARIANCE MATRICES: 

Numerical Stability in Multivariate Statistical Analysis 

by Sven Hammarling, NAG Central Office 

1. Introduction 

Many multivariate techniques in statistics are described in terms of an 

appropriate sums of squares and cross products matrix, such as a covariance 

matrix or a correlation matrix, rather than in terms of the original data 

matrix. While this is frequently the best way of analysing and under­

standing a technique, it is not necessarily the most satisfactory approach 

for implementing the technique computationally. 

From a numerical point of view, it is usually better to work with the 

data matrix and avoid the formation of a sums of squares and cross products 

matrix. In this article we indicate why it is better to work with the 

data matrix, look at techniques that allow us to avoid the explicit 

computation of sums of squares and cross products matrices and briefly 

consider the application of these techniques to three particular multi­

variate problems. 

2. Notation 

Let X denote an n by p data matrix (design matrix, matrix of observations) , 

where p is the number of variables and n is the number of data points 

(objects, individuals, observations), let x. denote the ith column of X, 
1 

so that 

X [xl x 2 •.• xp 1 (2.1) 

and x. is the n element vector of sample observations for the ith variable, 
1 

let x. and s. be respectively the sample mean and standard deviation for 
1 1 

the ith variable and denote x, D and e respectively as 

where 

d. 
1 

x 
p 

rl/s., s.~o 

to 
1 1 
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1 

1 

(2.2) 
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Then the matrix 

h -T 
X = X - ex (2.3) 

we call the zero means data matrix or the matrix of deviations from the 

mean and the matrix 

x = XD (2.4) 

we call the standardized data matrix, since the mean of each column of X 

is zero and the standard deviation of each column is unity (unless si = 0 

in which case the column is zero.) 

T hTh f d The normal matrices X X and X X are called the sums 0 squares an cross 

products matrix and the corrected sums of squares and cross products 

matrix respectively, the matrix C given by 

C 

is called the sample covariance matrix, because c ij is the sample 

covariance of variables x. and x. and the matrix R given by 
1 J 

R 
1 -T­

--X X n-l 

is called the sample correlation matrix, because r ij is the sample 

correlation coefficient of variables x. and x .. Of course 
1 J 

(2.5) 

(2.6) 

R = DCD (2.7) 

and both C and R are symmetric positive semi-definite matrices, since 

for any vector z 

T 1 h T A 

Z Cz = n-l (Xz) (Xz) ~ 0 

with a similar result for R. 

The notation liz" denotes a norm of the n element vector z and throughout 

this article we shall use only the Euclidean norm (Euclidean length) so 

that 

"z " = 

n 
L 

i=1 
(2.8) 
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Similarly /I z 1/ denotes a norm of an n by p matrix Z and throughout this 

article we shall use only the spectral, or 2-norm given by (Wilkinson, 1965) 

II z II (2.9) 

T T 
where a(Z Z) denotes the spectral radius of Z Z, that is the largest 

eigenvalue of ZTZ• One reason for our interest in these particular norms 

is that when Z is orthogonal, so that ZTZ = I, then 

II Zz II = II z II and II Z \I = 1, ZTZ = I (2.10) 

It is not necessary for the reader to have a detailed knowledge of the 

spectral norm of a matrix, and to give a feel for its size in relation 

to the elements of Z we note that 

p n 
2 ; 

p;l!zlI liz II ~ L: L: z, ,) ~ (2.11) 
j=l i=l 1.J 

Instabilitx in Formin~ Normal Matrices 

For numerical stability it is frequently desirable to avoid forming 

1 ' h T ATA b' d 1 'th th t k norma matr1.ces suc as X X or X X, ut 1.nstea use a gor1. ms a wor 

directly on the data matrices X or X. (See for example Golub, 1965) 

This can be especially important when the data matrix is close to being 

rank deficient, or when small perturbations in the data can change, or 

come close to changing, the rank of the data matrix. In such cases the 

normal matrix will be much more sensitive to perturbations than the data 

matrix. 

A well known example is provided by the matrix 

X = [1 1]' 
€ 0 

o e: 

£ ~ 0, 
= [1+€2 1 2] 

1 1 +€ 

Perturbations of order £ are required to change the rank of X, whereas 
2 T 

perturbations of only e: are required to change the rank of X X. This 

could be particularly disastrous if 1£1 is above noise level, while £2 

is close to or below noise level. 
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A second example is provided by the case where X is a square non-singular 

matrix. The sensitivity of the solution of the equations 

Xb = y 

to perturbations in X and y is determined by the size of the condition 

number of X with respect to inversion, c(X), given by 

c(X) = Ilx II IIx-
1 

II 

Wilkinson, 1963; Wilkinson, 1965; Forsythe and Moler, 1967.) 

Specifically, if we perturb X by a matrix E, the solution of the 

perturbed equations 

(X + E) (b + e) 

satisfies 

II ell ~ c(X) 

lib + e II 

y 

liE II , 

IIx II 

(3.1) 

(3.2) 

(3.3) 

where it should be noted that c(X) ~ 1. For the spectral norm it can 

readily be shown that 

T 2 
c(X X) = c (X) (3.4) 

so that unless c(x) = 1, which occurs only when X is orthogonal, XTX is 

more sensitive to perturbations than X. From (3.4) we once again see 

that perturbations of order £2 in xTx can have the same effect as 

perturbations of order £ in X. 

In terms of solving a system of equations, (3.3) and (3.4) imply that if 

rounding errors or data perturbations (noise) mean that we might lose t 

digits accuracy, compared to the accuracy of the data, when solving 

equations with X as the matrix of coefficients, then we should expect to 

lose 2t digits accuracy when solving equations with xTx as the coefficient 

matrix. 

Similar remarks apply to the sensitivity of the solution of linear least 

squares (multiple regression) problems when X is not square, so long as 

the residual, or error, vector is small relative to the solution; and 

once again it is advisable to avoid forming the normal equations in order 

to solve the least squares problem. (Detailed analyses can be found in 

Golub and Wilkinson, 1966; Lawson and Hanson, 1974; Stewart, 1977.) 



- 5 -

We are not trying to imply that normal matrices should be avoided at all 

costs. When X is close to being orthogonal then the normal matrix xTx 
will be well conditioned. It is not unusual for the data to be given 

in the form of a normal matrix such as a correlation matrix, in which 

case one has little option but to work from the normal matrix. 

Correlations in themselves provide useful statistical information and 

so one frequently wishes to look at the elements of the correlation matrix, 

although in this latter case the methods we propose allow us ready access 
T T 

to the elements of X X anyway. But the additional sensitivity of X X 

is a real phenomenon, not just a figment of the numerical analyst's 

imagination and since perturbations in X do not map linearly into 

perturbations in XTx, perturbation and rounding error analyses become 

difficult to interpret when xTx is used in place of X and decisions about 

rank and linear dependence (multicollinearity) are harder to make. 

4. The QU Factorization and the Singular Value Decomposition 

In this section we discuss the tools that allow us to avoid forming normal 

matrices. These tools are factorizations called the QU factorization 

(or the QR factorization) and the singular value decomposition. For 

simplicity of discussion we shall assume throughout that n ~ p so that 

X has at least as many rows as columns. With one exception we shall also not 

discuss the details of the algorithms for finding the factorizations, but 

instead give suitable references for such descriptions. Suffice it to 

say that both factorizations may be obtained by numerically stable methods 

using routines in the NAG Fortran Library. 

The QU factorization of a matrix X is given by 

(4.1 ) 

T 
where Q is an n by n orthogonal matrix, so that Q Q = I, and U is a p by p 

upper triangular matrix. Of course the rank of U is the same as that of 

X and when n = p the portion below U does not exist. 

The QU factorization of X always exists and may be found by means, for 

example of Householder transformations, or plane rotations, or Gram-Schmidt 

orthogonalization. (Wilkinson, 1965; Golub, 1965; Stewart, 1974; Dongarra 

et aI, 1979.) We discuss briefly a method using plane rotations in 

section 5. 
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Two features of the QU factorization are important for our purposes. 

Firstly we see that 

(4.2) 

so the elements of xTx can readily be computed .. from the inner products 

of columns of U, which means that U gives a convenient and compact 

representation of xTx. In fact, as with xTx, we need only ;p(p+l) storage 

locations for the non-zero elements of U. The matrix U is often called 
T the Cholesky factor of X x. Secondly if we perturb U by a matrix F then 

= X+E, 
E = Q~J (4.3) 

and since Q is orthogonal 

(4.4) 

so that a perturbation of order £ in U corresponds to a perturbation of 

the same order of magnitude in x. 

Q is an n by n matrix and so it is large if there are a large number of 

data points, but in fact Q is rarely required explicitly~ instead what 
T is usually required is a vector, or part of a vector, of the form Q y, 

for a given y, and this can be computed at the same time as the QU 

factorization is computed. 

The singular value decomposition (SVD) of a matrix X is given by 

x=tr (4.5) 

where Q is an n by n orthogonal matrix, P is a p by P orthogonal matrix 

and L is a p by P diagonal matrix 

L = diag(oi) = 0 1 0 0 

o O
2 

0 

o 0 a 
p 

with non-negative diagonal elements. The factorization can be chosen 

so that 

if; a if; 0 
p 

(4.6) 
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and we shall assume this to be the case. As with the QU factorization 

the SVD always exists and it may be obtained by first reducing X to bi­

diagonal form and then applying a variant of the QR algorithm to reduce 

this to the diagonal matrix E. (Golub and Kahan, 1965; Golub and Reinsch, 

1970; Wilkinson, 1977; Wilkinson, 1978.) The 0., i = 1,2, ••• ,p are 
1 

called the singuZar vaZues of X, the columns of P are the right singuZar 

vectors of X and the first p columns of Q are the Zeft singuZar vectors 

of X. If we denote the ith columns of P and Q by p. and q. respectively 
1 1 

then equation (4.5) implies that 

i = 1,2, .•• ,p. (4. 7) 

For this factorization we have that 

XTX 2 T = PE P , (4.8) 

which is the classical spectral factorization of XTX. Thus the columns 
T 2 

of P are the eigenvectors of X X and the values 0., i = 1,2, ••. ,p are 
1 

T 
the eigenvalues of X X. 

E and P give us an alternative representation for XTX, although not quite 

as compact as U since we now need p(p+1) storage locations. Note that 

(4.8) implies that 

(4.9) 

Analagously to equations (4.3) and (4.4) if we perturb E by a matrix F 

then 

X+E, E (4.10) 

and 

IIFII= liE II (4.11) 

so that again perturbations of order £ in E correspond to perturbations 

of the same order of magnitude in X. 

The SVD is important in multivariate analysis because it provides the 

most reliable method of determining the numerical rank of a matrix and 

can be a great aid in analysing near multicollinearities in the data. 
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Of course if X is exactly of rank k < p then from (4.5) and (4.6) we must 

have 

and from (4.7) 

Xp, = 0, 
1. 

= C1 = 0 p 

i = k+l,k+2, ••• ,p 

so that these columns of P form an orthonormal basis for the null space 

of X. If X is of rank p, but we choose the matrix F in equation (4.10) 

to be the diagonal matrix 

F = diag(f,), 
1. 

f, 
1. 

i = 1,2, ... ,k 

i = k+l,k+2, .•• ,p 

then (X+E) is of rank k and from (4.11) 

liE " = C1k +1 

(4.12) 

(4.13) 

so that regarding a small singular value of X as zero corresponds to 

making a perturbation in X whose size is of the same order of magnitude 

as that of the singular value. 

Conversely, if X is of rank p, but E is a matrix such that the perturbed 

matrix (X+E) is of rank k < P then it can readily be shown (Wilkinson, 1978) 

that 

2 
e" ~ 

1.J 
(4.14) 

so that if the elements of E are small then the singular values 

0k+l,ok+2""'C1p must also be small. Thus if X has near multicollinearities, 

then the appropriate number of singular values of X must be small. To 

appreciate the strength of this statement consider the p by p matrix 

u = 1 -1 -1 

o 1-1 

o 0 1 

o 0 0 

000 

000 

-1 -1 -1 

-1 -1 -1 

-1 -1 -1 

1 -1 -1 

o 1-1 

001 
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U is clearly of full rank, p, but its appearance belies its closeness 

to a rank deficient matrix. If we put 

E o 
o 

o 

o 
o 

o 

o 
o 

o 
_22-p 0 0 

then the matrix (U+E) has rank (p-l), so that when p is not small U is 

almost rank deficient. On the other hand (4.14) assures us that 

° p 

so that the near rank deficiency will be clearly exposed by the singular 

values. For instance, when p = 32 so that 22-p = 2-30 ~ 10-9 the 

singular values of U are approximately 20.05, 6.925 , ••• , 1.449, 
-10 -9 

5.280 x 10 and 032 is indeed less than 10 . 

The SVD can be computed by numerically very stable methods and the above 

remarks also hold in the presence of rounding errors, except when the 

perturbations under consideration are smaller than the machine accuracy, 

which is not very likely in practice. Even then we only have to allow 

for the fact that computationally singular values will not usually have 

values less than about eps.01' where eps is the relative machine precision, 

because now the machine error dominates the data error. For example on 

a VAX 11/780 in single precision, for which eps = 2-24 ~ 6 x 10-8 , the 

smallest singular value of the above matrix U, as computed by the NAG 
-8 -10 

Library routine F02WDF, was 4.726 x 10 instead of 032 = 5.280 x 10 • 

The singular value decomposition is of course a more complicated 

factorization than the QU factorization, it requires more storage and 

takes longer to compute, although this latter aspect is frequently over­

emphasised. 

For many applications the QU factorization is quite sufficient and a 

convenient strategy is to compute this factorization and then test U 

to see whether or not it is suitable for the particular application. 
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For example, if U is required to be non-singular then, at a moderate 

extra expense, we can compute or estimate its condition number c(U) in 

order to determine whether or not U is sufficiently well-conditioned. 

If U is not suitable we can then proceed to obtain the SVD of U as, say 

U = Q L pT, (4.15) 

T where Q and P are orthogonal and L is diagonal. From 

we get that the SVD of X is then given by 

"PJ T " X = QL~ P , where Q (4.16) 

and thus the singular values and right singular vectors of U and X are 

identical. We can take advantage of the upper triangular form of U in 

computing its SVD and for typical statistical data where n is considerably 

larger than p the time taken will be dominated by the QU factorization 

of X. The NAG Fortran routines for computing the SVD in the case where 

n ~ p all compute the QU factorisation first and routine F02WDF explicitly 

allows the user to stop at the QU factorization if U is not too 

ill-conditioned. 

5. Plane Rotations and the QU Pactorization 

In this section we give just a brief discussion of plane rotations and 

their use in obtaining the QU factorization since the ideas will be useful 

in section 6. 

A plane rotation is a transformation of the form 

c = cose, s 

where x and yare column vectors. The matrix 

R = r c ~ 
ts 5 

sine (5.1) 

is called a plane rotation matrix and because c 2 + s2 = 1 we have RTR = I so 
T T that R is orthogonal. If x and yare rows i and j of some n by p matrix X 
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then the transformation is said to be a plane rotation for the (i,j) 

pZane and the plane rotation matrix with the (i, i) , (i,j) , (j , i) and 

positions of the unit matrix replaced by the four elements of R is 

denoted by R ..• For example when n ::::! 7, i ::::! 2 and j ::::! 5 then 
1.J 

R25 = 1 0 0 0 0 0 0 

0 c 0 0 s 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

0 -s 0 0 c 0 0 

0 0 0 0 0 1 0 

0 0 0 0 0 0 1 

Of course only rows i and j are affected by such a transformation and 

R .. is orthogonal. 
1.J 

(j , j) 

By appropriate choice of the angle 8 we can use plane rotations to perform 

elimination of elements. For instance if we take 

s = 

-1 
which corresponds to the choice 8 = tan (Yl/xl)' then 

This is illustrated geometrically in Figure 5.1. 

Fig 
5.1 

y 

(5.2) 

(5.3) 

Obviously if xl and Yl are both zero then they remain zero for any choice 

of 8. 
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The QU factorization of X can be obtained by performing a sequence of 

plane rotations on X. Various sequences will achieve this, for example, 

the process analogous to the usual description of Gaussian elimination 

is to perform the elimination column by column. The elements below the 

diagonal element in the rth column being eliminated by a sequence of 

rotations in the (r,r+1) plane, the (r,r+2) plane , •.• , the (r,n) plane. 

Thus if we define the orthogonal matrix Q by 
r 

QT R R r,r+2 
R r,r+1 r rn 

(5.4) 

then we have that (if n = p take Qp = I) 

T T 
QpQp- 1 

T T 
Q2Q1X 

[~l 
(5.5) 

so that 

X Q~J (5.6) 

(Givens, 1958.) Note that if we require a vector or part of a vector 
T of the form Q y, then we can apply the plane rotations to y at the same 

time as they are applied to X, thus avoiding the need to store the 

rotations. 

An alternative scheme, which can be very useful in statistical applications, 

is to process X a row at a time instead of a column at a time. In 

statistical terms this corresponds to processing One observation at a 

time as opposed to the above case where X is processed one variable at 

a time. Thus in this scheme, in place of (5.4), we define 

= {R 1 ... R2 R1 ' r- ,r r r 
R ... R2 R1 ' pr r r 

and then in place of (5.6) 

X Q~l 

1 < r ~ p 

r > p 

(5. 7) 

(5.8) 

The importance of this scheme is that it enables us to process the data 

sequentially, an observation at a time, without having to store the data 

matrix X. If we let X denote the data matrix for the first r observations 
r 
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then, after processing the rth observation, we have a QU factorization 

(5.9) 

where U is a p 
r 

zero if r < p. 

by p upper triangular matrix whose last (p-r) rows are 

If zT 1 denotes the (r+l)th row of X then, since Q(r) 
r+ 

affects only the first r rows of X, 

[:r+lJ = :~ 1 = 
r+1 

a 

Q(r) U 
r 

a 
= Q (r+l) ~u ~ r+l 

a 

so that 

T 

~r+1J Qr +1 U 
r 

a 
T 

z r+l 
a 

The essential part of this transformation is of the form 

PT U 
r+l r 

where in place of (5.7) 

= { R(r) R(r) R(r) 
r-l,p+l'" 2,p+l 1,p+l' 

R (r) R (r) R (r) 
p,p+l .•• 2,p+l 1,p+l, 

l<r:$p 

r < p 

(5.10) 

(5.11) 

and the (p+l) by (p+l) matrix R~r) 1 is defined by the same angle e as 
~,p+ 

that defining the n by n matrix R .• 
~r 

Thus we can think of this as an updating process and indeed, whenever 

we have a QU factorization, we can use this technique to update the 

factorication with new observations. (Golub, 1965; Gentleman, 1974a; 

Gill and Murray, 1977; Dongarra et ai, 1979; Cox, 1981.) 
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6. The QU Factorization of Corrected Sums of Squares and Cross Product Matrices 

As mentioned in the previous section there are many applications where 

it is desirable to process the data sequentially without storing the 

data matrix X. Statistical packages such as BMDP allow one to form 

covariance and correlation matrices by sequentially processing the data 

(BMDP, 1977, section A.2) and we now show that we can also obtain the 

QU factorization of such matrices by a corresponding process. As far 

as we are aware this has not been described elsewhere in this context, 

although it is a straightforward application of a standard rank one 

update. 

First we must note that sample means and variances can be computed 

sequentially and, indeed, there are good numerical reasons for preferring 

to compute means and variances this way, rather than by the traditional 

formulae. (Chan and Lewis, 1979; West, 1979; Chan, Golub and Le Veque, 

1982). If we denote the ith observation of the jth variable as x~i) and 
J 

let y~r) and x~r) denote, respectively, the estimated sums of squares 

of deviations from the mean and the estimated mean of the first r 

observations, so that 

_(r) r (i) (r) 
r 

(i) ) 2 x. = 1: Xj ) /r, Yj = 1: (x(r) Xj , 
J i=1 i=1 j 

then it is readily verified that 

_(r-1) «r) _(r-1»/ 
= Xj + Xj - Xj r (6.1 ) 

= y~r-1) + (r-1) (X~r) _ x~r-1»2/r 

Of course 

(6.2) 

and so we can obtain x and D of (2.2) with one pass through the data. 

Given the QU factorization of X, (2.3) gives 

" X = 

f 
T 

Q e (6.3) 
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Now f can be reduced to a scalar multiple of the first column of the 

unit matrix, e 1, by various sequences of plane rotations. Of particular 

interest here is the sequence defined by 

R(1) R(1) 
n-2,n-1 n-1,n 

(6.4) 

so that 

and 

(6.5) 

The matrix e
1
xT 

is zero everywhere except the first row and rotations 

defined by p~ introduce an extra sub-diagonal below U so that the matrix 

in the braces has the form illustrated, when p = 5 and n = 8, by 

pT U 
1 

- n!e x? 
1 

x x x x x 

x >< x x x 

x x x x 

x x x 

x x 

x 

This can be transformed back to upper traingular form by a sequence of 

plane rotations 

pT = R(2) 
2 p,p+1 

(2) (2) 
R

23 
R

12
, (6.6) 

" where U is a p by p upper triangular matrix, so that the QU factorization 
" of X is given by 

" Q[:l X (6.7) 

Since we can obtain the QU factorization of X without storing X and 

noting that UD is still upper triangular, this process, together with 
" -(6.1) and (6.2) enables us to find the QU factorizations of X and X of 
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of (2.3) and (2.4) and hence the Cholesky factors of the matrices C and 

R of (2.5) and (2.6), by sequentially processing the data an observation 

at a time. 

This method requires storage of the n element vector f. 

A 

As an alternative we can obtain the QU factorization of X by an updating 
A 

process. If we let X denote the zero means data matrix for the first 
r 

r observations, define x(r) as the vector 

(_(r»T _ [_(r) _(r) _(r)] 
x - xl x 2 .•• xp 

and take the number of elements in the vector e by context, then 

using (6.1) 

X
A = X (-(r+l»T 
r+l r+l - e x 

- (r) ;IT 
+ (zr+l-x )/(r+l~ 

so that 

"lr -
1 ( -(r») T 1 X r+l e z -x 

r+l r+l 

(z _x(r+l»T 
r+l 

(6.8) 

We can obtain the QU factorization of {Xr - r!l e (Zr+l--x (r»T} from 

above and we can then update this 
A 

that of X by the method described 
r -(r+l) T 

row (z 1-x ). r+ QU factorization by the additional Again it does 
T 

not seem to be possible to avoid storing the n element vector Q e. 

A method requiring storage only of additional p element vectors would 

be useful. 

7. Solving Multiple Regression Problems 

In this section we consider the application of the QU factorization and 

the singular value decomposition to multiple regression, or linear least 

squares and we shall take X to denote either the data matrix, or the 

standardized data matrix since the solution of a regression with one 

matrix can be deduced from the solution with either of the others. 
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We wish to determine the vector b to 

T minimize r r, where y = Xb + r (7.1 ) 

and y is a vector of dependent observations. The elements of bare 

called the regression coefficients and r is the residual vector usually 

assumed to come from a normal distribution with 

T 2 
E(r) = 0 and E(rr ) = a I 

If Q is orthogonal then 

T T T T 
r r = r Q Qr = (Qr) (Qr) 

and (7.1) is equivalent to 

-T-minimiz<3 r r, - T r = Q r (7.2) 

If we choose Q as the orthogonal matrix of the QU factorization of X 

and partition QTy as 

yap element vector (7.3) 

then 

(7.4) 

If X has linearly independent columns then U will be non-singular and 

we can choose b so that 

Ub y (7.5) 

Since w is independent of b, this must be the choice of b that minimizes 
-T- T r r and hence r r (Golub, 1965; Gentleman, 1974b). For this choice 

r = T 
r r 

T 
ww (7.6) 

which is information that is lost when the normal equations are formed. 

We need not retain w during the factorization, but we can instead just 

update the sum of squares so that we have the single value wTw on 
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completion of the QU factorization. As the discussion in section 3 

indicates, the sensitivity of the solution of (7.5) is determined by 

the closeness of X to rank deficiency, whereas the sensitivity of the 
T solution of the normal equations is determined by the closeness of X X 

to rank deficiency and we have seen that, if perturbations of order E 

change the rank of X, then perturbations of order E2 change the rank of 

xTx. (Wilkinson, 1974). 

If X is rank deficient, so that its columns are not linearly independent 

then U will be singular. Using the notation of (4.14), if we then obtain 

the SVD of U (7.4) becomes 

[ 
- T ] ~- ] I~_T_ T J r = y - Q : P b = L~ ~ LQ Y wE P b 

so that (7.1) is equivalent to 

A -T- T 
where r = Q y - E P b (7.7) 

If X has rank k then only the first k singular values will be non-zero, 

so let us put 

S - k by k and non-singular (7.8) 

-T- T and correspondingly partition Q y and P b as 

Q y = :' P b = ~' -T- [AJ T [A] y, c - k element vectors (7.9) 

Then 

A fy AJ r = L ~ Se 
(7.10) 

ATA A 

and r r is minimized by choosing c so that 

Sc = y (7.11) 

i =1,2, •.. ,k. We also have 

T T 
w w + v v (7.12) 
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As c is not determined by (7.11) we can see that the solution is not 

unique. The particular solution for which bTb is also a minimum is called 

the minimaZ Zength soZution and from (7.9) we see that this is given by 

taking 

c = 0 in which case b (7.13) 

(Golub and Reinsch, 1970). It is of interest to note that this solution 

can formally be written as 

t 
b = Xy, (7.14) 

t where X is the Moore-Penrose pseudo inverse of X. (Peters and Wilkinson, 

1970.) Using (4.15) it is readily verified that 

(7.15) 

In practice X will not be exactly rank deficient and the computed singular 

values will not be exactly zero and while it is not always easy to decide 

upon the numerical rank of X, (Golub, Klema and stewart, 1976; Stewart, 

1979; Klema and Laub, 1980) equations (4.10) - (4.13) tell us about the 

effects of neglecting small singular values. Furthermore (4.7) gives 

II Xp. 1/ = (J. ( 7 • 16) 
1 1 

and so the columns of P corresponding to small singular values give 

valuable information on the near Inulticollinearities in X. We can also 

readily assess the affects of different decisions on the rank of X on 

the solution and on the residual sum of squares from a knowledge of the 

singular values and right singular vectors (Lawson and Hanson, 1974, 

chapter 25, section 6.) 

The NAG Fortran routine F04JGF for computing least squares solutions 

allows the solution to be computed from the QU factorization when U is 

sufficiently well-conditioned, but proceedes on to the SVD if U is nearly 

singular and in this case, although a particular solution is computed, 

the singular values and right singular vectors are also returned so that 

alternative possibilities can readily be assessed. 
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The usual additional statistical information can efficiently be computed 

from either of these factorizations. For example, when X is of full rank 

then the estimated variance-covariance matrix of the sample regression, 

V, is defined as 

2 T -1 
V = s (X X) , (7.18) 

2 
where s is the estimated variance of the residual and from (4.2) this 

becomes 

and the element v .. is given by 
1J 

2 T -1 -T 
v .. = s e.U U e. 

1J 1 J 

(7.19) 

T 
U f. = e. 

J J 
(7.20) 

where e. is the ith column of the unit matrix. In particular the diagonal 
1 

elements v .. are the estimated variances of the sample regression 
11 

coefficients and these can efficiently be computed from 

2 T 
v .. = s f.f., 

11 1 1 

this requiring just one forward SUbstitution for each fl. 

When X is not of full rank and a minimal length solution has been obtained, 

so that b is given by (7.14) then in place of (7.18) we must take 

From 

and 

then 

V = s2(XTX)t 

(4.8) this becomes 

V = S2(PL2pT)t = s2p(E2)tpT 

= /p [:-2 ~JT 
if we partition P as 

P =~1 p;J 

corresponding 

v .. 
1J 

2 T 
s f.f., 

1 J 

P
1 

- P by k 

to (7.20), here we have 

and once again the elements of V can be computed efficiently. 

(7.21) 

(7.22) 
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As a second example, if x is a p element vector of values of the variables 

x
1

,x
2

, ... ,x
p

' then the estimated variance of the estimate of the dependent 

variable xTb is given by 

2 2 T 
a. = s x Vx (7.23) 

and this can be computed from 

2 s2f Tf , T 
a. = U f = x (7.24) 

for the QU factorization and 

2 s2f Tf , Sf 
T 

ex = P
1
x (7.25) 

for the SVD. 

Reliable methods for solving regression problems for which E(rr
T

) = cr
2w 

when W ~ I are discussed in Paige, 1978 and 1979 and Kourouklis and Paige, 1981. 

Despite the fact that some authors do not approve of the SVD - for instance 

to quote from Beale (1982) " •.. the square roots of the pivot elements a rr 
arising in the Gauss-Jordan process, may all be reasonably large and yet 

A [= XTX] may be effectively singular. This sad fact has led to proposals 

for the use of Singular Value Decomposition to determine the true number 

of effectively linearly independent regressor variables. These proposals 

should be resisted." - when X has near multicollinearities the SVD provides 

such useful information that its use really should not be resisted, but 

should instead be encouraged. 

8. Principal Components and Canonical Correlations 

In this section we give just a brief mention of two further applications 

of the singular value decomposition in multivariate analysis 

Given a zero means data matrix X, possibly standardized, the aim of a 

principal component analysis is to determine an orthogonal transformation 
A 

of the columns of X to a data matrix Y whose columns have non-increasing 
A 

variance, each column of Y having as large a variance as possible. If we 

let B be the transformation matrix so that, 

A A 

Y = XB (8.1) 

and denote the columns of Y and B by y. and b. respectively then we wish 
1. 1. 

to determine the first principal component Y1 

A T 
so that Y1 has maximum variance subject to b 1b 1 = 1. 
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A 

The second principal component Y2 

T is determined so that Y2 has maximum variance subject to b
2
b

2 
= 1 and 

T 
b 1b 2 = 0 and so on for the remaining components. 

Since X has zero means so does Y and hence maximizing the variance of Y
i 

is equivalent to maximizing Y~Yi' Thus Y
1 

is determined by 

(8.2) 

If Q is an orthogonal matrix this is equivalent to 

(8.3 ) 

" If Q is chosen as the left-hand orthogonal matrix of the SVD of X then 

and if we put 

then 

a, 
1. 

T 
zl z 1 a~~2 

:;; 2 2 
0 1 (aU 

~} . 
2 2 2 2 

a 1 aU + °2a 21 

2 2 
+ a 21 + ••• + ak1 ) 

Equality occurs with the choice all 

2 2 
+ ••• + °k~l 

2 :;; 0 1 

1, a
j1 

= 0, j > 1 which gives 

It is a straightforward matter to show that 

Pi so that B = P 

A 

(8.4) 

(8.5) 

(8.6) 

and hence P is the matrix that transforms X into its principal components. 

Notice that 

(8.7) 

= I;2 
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so that the columns of Yare uncorrelated and the estimated variance of 

Y
i 

is a~/(n-l}. Notice also that 

y = XP = Q~J 

and hence 

(8.8) 

Once again the SVD allows us to properly use our judgement as to which 

components are significant. 

" " Given two zero mean data matrices X and Y the canonical correlation problem 

is to find a transformation, A, of the columns of Y 
" Z = YA (8.9) 

such that the columns of Z are orthonormal and such that regression of 

a column of Z on X maximizes the multiple correlation coefficient. If we 

denote the ith columns of A and Z by a. and z. respectively and denote 
~ ~ 

" A 

the vector of regression coefficients of zi on X by b
i 

then, since X 

and Y have zero column means the multiple correlation coefficient is 

2 " T" T r. = (Xb.) (Xb.) /z. zi 
~ ~ ~ ~ 

Thus to find the first canonical correlation we wish to determine a
1 

to 

maximize: (8.10) 

subject to: 

A "-

Let the singular value decompositions of X and Y be given by 

(8.11 ) 

and partition QX' Qy and Pyas 

QX • rx 6J. Qy' ~y 6y]. (8.12) 
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If we take the minimal length solution to the regression problem, this 

of course being the standard solution when X is of full rank, then from 

(7.14) 

(8.11 ) 

and (8.10) becomes 

maximize: (8.12) 

subject to: 1 

Now put 

(8.13 ) 

~ 

Bearing in mind that z, = 
1. 

Y ai' it is readily verified that 

T T 
and 

T T c,c, = Z,z, cic j = ZiZj 1. 1. 1. 1. 
(8.14) 

and 

(8.15) 

and hence (8.12) becomes 

maximize: (8.16) 

subject to: 

Comparison with (8.2) shows that this is equivalent to the problem of 

finding the first principal of -T- (8.14) component QxQy · From we can see 

that if solve the principal component -T- then we have we problem for QxQy 
solved the canonical correlation problem for the pair (X, Y). 

-T- 2 The singular values of QxQy are the multiple correlation coefficients r
i 

and these are called the canonical correlation coefficients. A full 

discussion of this and related topics can be found in Bjorck and Golub, 1973. 

~ ~ 

The above discussion can be considerably simplified if X and Yare 

assumed to be of full rank and we use QU factorizations in place of the 

SVD (Golub, 1969), but the above discussion is included to indicate the 

potential power of the SVD as an aid to the solution of difficult 

multivariate statistical problems. 
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Many other applications of the singular value decomposition in mUlti­

variate analysis are discussed in Chambers, 1977 and Banfield, 1978 • 
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