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1 INTRODUCTION
For many iterative methods of solving n x n systems of linear equations the
error vector €. of the rth approximate solution X, satisfies a relation of the

form
e =P e (1.1)

where Pr is an n x n iteration matrix related to some splitting of the matrix

of coefficients. Putting

Qr = Pr"'P1Po (1.2)

equation (1.1) gives

er+1 = Qreo * (1.3)

Convergence is then usually established by showing that either

P [ <6< (1.4)
for some convenient norm, or that

p(Pr)Sf) <1 (1.5)
where p(Pr) is the spectral radius of Pr' In either case this ensures that

Lim Qr = 0 and Lim 5, = o R (1.6)

rT> o T~
The asymptotic rate of convergence is governed by the speed at which 6r = 0,
It is not generally appreciated that this concentration on the asymptotic rate
of convergence may be extremely misleading as far as the practical behaviour

is concerned.

In some of the more important iterative methods Pr = P, independent of r;
these are the so—called stationary iterative processes. We shall demonstrate
our thesis by means of one of the best known stationary iterative processes,
the successive over-relaxation (S.0.R.) method and a special case of this, the

Gauss—Seidel method. We first describe the S.0.R. algorithm. Consider the

system of equations



Ax = b (1.7)
and write
A= "1#D+U (1.8)

where L, D and U are the matrices formed respectively by the sub—diagonal,
diagonal and super—-diagonal elements of A. The Gauss—Seidel method arises by

writing equation (1.7) in the form
(I+D)x = b-Ux
and the Gauss-Seidel iteration is then defined by the relation
(Iﬁ-D)XPH = b-Ux, , ' = 0,1,... (1.9)

From a given X, this relationship allows us to determine the elements of X
in their natural order. The S.0.R. method is derived from the Gauss-Seidel
method by taking the change in each element of X, to be a multiple, w, of the

change that would be obtained by using the Gauss-Seidel method at that stage.

Hence the S.0.R. iteration is

-1
= }-CI‘+ w[D (b_LXH— —er)-xr]p r=0,T)ec. (1.10)

Tt 1

which can be written as
1 1
(It D)x,pq = b=[01=- $)>e0] =, (1.11)
so that S.0.R. corresponds to writing equation (1.7) in the form
1 1
(1+ gD)x = b= [(1- P>+ x .
S.0.R. reduces to Gauss—Seidel when w = 1. From equation (1.11) the error
vector e = x-x_ satisfies
T T
((L)I_rI'D)eH1 = [ (1-w)D-wt1] e,

so that

ey = (D)™ [G-ap-a] e, . (1.12)

Thus the S.0.R. iteration matrix is the matrix P(w) given by



p(w) = (wL+D)™" [ (1-w)D=wtl] . (1.13)

Tt is well known that if A is a strictly diagonally dominant matrix then S.0.R.
is convergent if O < @ < 2, The proof of convergence depends upon showing

that
p [P(w)] <1 for 0 <w< 2,

If p[P(w)] is appreciably less than unity then the asymptotic rate of convergence
must be very satisfactory; however we show in the next two sections that the

actual behaviour of e, may be extremely disappointing.

2  THE EARLY BEHAVIOUR OF S.0.Re
We first illustrate, by means of a simple example, that the tearly! behaviour of

S.0.R. may be very poor. Consider the 2x 2 matrix defined by

005 0

101 o.5

The eigenvalues of P are given by X1 = KZ = 0.5 so that p(P) = 0.5. Hence if
we have an iterative process for which 8o T Per its ultimate theoretical rate

of convergence must be very satisfactory. However we have that

1 0

orx 100

so that if the initial error vector is ég = [1 O] then e? = [0.5 1O1O],a
vast increase. It is not until the 40th iteration that the components of e.
are both less than unity and we can really be said to be obtaining the benefit

of the satisfactory theoretical rate of convergence.

There are norms for which Il p “ <1, but they are highly artificial. For example

the norm defined by



-1
el = lxexll
where
1 0
K =
g 1O11
gives
0.5 0
K~PK =
0.1 055
so that
“P||K= 0.6.

However it is immediately evident that for any vector norm consistent with this

matrix norm we have

1 0

1
10 L

0 llx Tk

which is clearly an undesirable feature.

The reader could be excused for regarding this example as very artificial. For
a matrix of order 2 examples illustrating our point are indeed unsatisfactory,
but for matrices of higher order, though not excessively high order, poor

behaviour can arise with examples which are by no means bizarre.

Consider the case when A is the lower triangular matrix defined by
A = Ital (2.1)
where L is such that

m—
i
10, it i-1.



A is illustrated when n = 4 by

- o

o 0 0 0
1 o 0 0]
0 1 o 0

0] 0 1 a

When o > 1, A is strictly diagonally dominant. The iteration matrix Pn(w) of

order n corresponding to S.0.R. is given by
. . -1
P (0) = (uita1)” [(1-wozl. (2.3)

When @w= 1 this is the null matrix so that the Gauss-Seidel method converges in
one iteration starting from any initial approximation, this being true of course

for any lower triangular matrix. Equation (2.3) can be written as

)]

-1
P (0) = (1-w)(I-pL)"" , B=-=. (2.4)
The form of Pn(w) is adequately illustrated by

1 o 0o 0]
B8 1 0 0

%(@= U—@ 5 .

B B 1 0

B § § 1

The eigenvalues of Pn(w) are all (1-) so that
pLp (@] = [1-0l (2.5)

and if |1—<»|is appreciably less than unity the asymptotic rate of convergence
must be satisfactory. However successive powers of Pn(ﬁ) are of the form

illustrated by

[ 1 o o 0] ot o +o 0]

2B 1 0 0 3B 1 0 0
P = (=97 | 32 L0 4 o[ B == g2 s o,

48 38° 28 1 (108 65" 38 1]



- 7
1 0 0 O
48 1 0 O
Pj(w) e (1—094 5 , etce
108 48 1 0
| 20g2  108° 4 1

In the general case the (n,1) element, D

(r)
1

nq 1 OF P;(w) is given by

-2 -1
o) T2 (40T (2.6)

and even when l(1—uDBl is appreciably less than unity the absolute value of this

clement continues to increase for some time, In fact 1t will increase until

71
(% [-w <1,

that is until

Suppose, for example, that we have the values
w = 1.5, n=100, a = 1.5 . (2.7)
Then despite the fact that p [Pn(w)] = 0.5, |p£?)] will increase until r = 100

at which point

p§$8?3 B 198099(—0.5)100(—1)99 « 1.8 x 107,

T . .
Thus an initial error vector of eo = [1 0 ...O] gives rise to an error vector
28

400 whose nth element is —=1.8 x 10 . It is not until iteration 330 that all

the elements of e, are less than unity in absolute value.

Once again we can find norms for which ||P|I< 1, but again they are highly

artificial. For instance if we take

"1 0 .. 0

K = (2.8)




1

then K—1Pn(<w)K is of the form illustrated by

™~ -1

1 0] 0 O

e 1 0O O

K—1P4(w)K L1 2) g % (2.9)

and a suitable choice of y will ensure that
! ! _ -1 .
ip ()il o = Ix7p (o)l <.

For example with @= 1.5, a = 1.5 and y = 10 we find that
= 2 [f S

1B () I = g [1-(0.1)"] <1.
Unfortunately any vector norm consistent with this will be such that

' | 1-1

le, & =9 7 leyll
where here e; is used to denote the ith column of the identity matrix. Such a
norm may therefore be far less sensitive to changes in the nth component of a

vector than to changes in the first. Typical of such vector norms is | x “K

defined by

=1 1-1i
|||X“K= I x X“m - max | y X,

Clearly ||x “K may be very small even when a more natural norm such as le Ww
is quite large. (The matrix norm llAIIK is, of course, the norm induced by the

vector norm ||XI|K).

Tt is worth noting that the matrix A of equation (2.1) is such that

lal, 127, - (-1-) ( —->

and when o = 1.5 this becomes

—_

lall, a7, =50-—)<5
1¢5



so that A is very well—conditioned. Hence, for this example the poor early

behaviour is certainly not due to A being ill-conditioned.

3 THE BEHAVIOUR OF S.0.R. IN THE PRESENCE OF ROUNDING ERRORS

In the previous section we showed that any error present in our initial
approximation can grow extremely large before we begin to feel the effect of
the asymptotic convergence. In practice since we are forced to use a finite
arithmetic, such as t—digit binary arithmetic, we shall introduce rounding
errors at each stage of the computation so that the "early" behaviour may in

fact become the ultimate behaviour.

To illustrate the point S.0.R. was applied, using a KDF9 for which t = 39, to

the two sets of equations
Ax = b and Ay = ¢ (3.1)

where A is the matrix of equation (2.1) and b and ¢ are given by
r .
145, 1 1
b, = ﬁ i C. = 2.5, 1i=1,2,000,1. (3.2)

* 2 B39 P, 5. %

The exact solutions to these equations are given by

. = LR
¥, =1, 1= 1,200 5 55 =1 -(1—3 , = 1,2,00e,n (3.3)

so that in the first case the solution is exactly representable in t-digit

binary arithmetic, but in the second case the solution is not exactly representable.

The values of w, n and o were taken as in equation (2.7) and the initial

approximations to the solutions were

8

1410 7, i =1
XgO) = ) ; y:EO) = :7]_, l = 1,2,0..,1’1 (304)
= 2,3,.-.,ﬂ

1]

—
-
(=)
I

where &i is the best machine representation of y..



In the first example the computation proceeded very much as though rounding

errors were absent. The maximum error occurred on the 100th iteration when

e(100) = 11,8002 x 1020 = =1,8002 «x 1028e(0) .
100 1
arter this |l e |, eradually diminished wntil by iteration 329, | 6329“00 < 1075,
The exact solution was obtained on iteration 347.
In the second example, since s is not exactly representable, even when ygr) is

correct to working accuracy an error is still propogated down to yggg so that
we cannot escape the effect of rounding errors. Thus, despite an initial

approximation which was correct to working accuracy, “ ernc° gradually increased

and reached a maximum at iteration 214 at which point

| 6214”00 = 0.881 x 1011 .

(r)

From this point on |}erIL° remained fixed at this value with the element €300

oscillating between +2.881 «x 1017. On this example we should need to use at

least 97 digit binary arithmetic just to obtain one figure accuracy.

As a further illustration of poor practical performance we constructed an
example for which we expected the method of Gauss-Seidel to perform badly.

Consider the matrix A given by

A = ItoI+U (3.5)

where L and U are strictly lower and upper triangular matrices respectively with

: ; j—1i+1 . .
lij =q, 1 >j and LT (—1)J y J 71 = (3.6)

A has the form illustrated when n = 6 by



10

o o o 1 -1 1
A = .
o o o o 1 -1
o o o o o 1
[0 o o o o o

The corresponding Gauss-Seidel iteration matrix is given by

Pn=_%XéMH4U (3.7)

and the form of Pn is adequately illustrated by

o -1 1 -1 1 =1

0 1 =2 2 =2 2

LO 0 0] 0 0 1

The spectral radius of Pn is given by
(P ) =1/]al (3.8)

so that 1if la\ is appreciably larger than unity the asymptotic convergence must

be good.

The form of Pn suggests that some elements of Pz may get very large in absolute
value before the effect of the asymptotic convergence is felt. If we take
«=-3, n=>50 (3.9)

then we find that the absolutely largest element occurs when r = 36 and is

given by
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o8| = 1a25g < 1073

The method of Gauss-Seidel was applied, again using a KDF9, to the equations

Ax = b (3.10)
where A, o and n are given by equations (3.5) and (3.9) and b is given by

(1_31, i odd
b, = < (3.11)

i \ ..
L_31’ 1 evenhe

The exact solution to equations (3.10) is given by

X, = 1, 1 = 1,2,.e0ynj n even, (3.12)

An initial approximation of

8

=) o 1y 1= 1,2,400449; xgg) = 1410 (3.13)

1
was taken. ” er” o duickly increased and reached an initial maximum when
r = 36 at which point

Feggll, = 1225 10”7 .

After this uerllo° oscillated somewhat, but settled approximately at a level

3

of the order of 10°. As in the previous example, this poor practical behaviour

is not due to A being particularly ill-conditioned because for this example

bal, Bal, =3 2-= o« = =3
4 2n—1 !
< 2,
4

When n = 50, A is therefore quite well conditioned from the point of view of

39 binary digit computation.
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4 ERROR ANALYSIS FOR THE PRACTICAL CONVERGENCE OF S.OeRe.

In this section we wish to establish a bound on Lim I”ertl/llxl' where x is
T >

the exact solution of the equations Ax = b, e, = X X and X, is the rth computed

iterate.

From equation (1.12) we can see that S.O.R. belongs to the class of iteration

methods that satisfy

X4q = Prxr + (I—Pr)x s = 0315600 (4.7)

Computationally, in place of equation (4.1), X will satisfy an equation of

r+1
the form

X4q = PXF (I-—Pr)x+€r (4.2)

where Er is the difference between the computed X and the vector which would

have been obtained with exact computation starting from the computed X . Let

us suppose that the iteration matrix is such that for some norm

le l<s <1, r=o0,1,... (4.3)
so that asymptotic convergence is assured and also let B be a value such that

“ Erﬂ < Bu X “1 r=0,Ty0ee (4.4)
Then from equation (4.2) we find that

R Pref+€r (4.5)

so that

Lol < sliei+plxl (4.6)
from which it follows that

(18"
e I <8™ ey ll+ \1—1—,_%- =

a (4+7)

Hence
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— e,
. < B
Lim Kl — (4.8)

T > o

To look at the particular case of S.0.R. we now make some additional
simplifying assumptions. We assume that t-digit binary arithmetic with a unit

rounding error of 2_JE is used and that a bound of the form
(1_2—t)r < 1+e € (1+2—t)r
can, without undue optimism, be replaced by
| e| < rZ_t .

The computed values will not be of any practical interest unless from some

point onwards “ Xrlh ig of the order of magnitude of ” x|l « We shall assume

that there exists a positive integer k such that

I< I <2l=xl (r>x) (4.9)

though it will be appreciated that in some of the examples we discussed in

section 3 the behaviour was so bad that even this was not true.

Now, from equation (1.10), we have computationally that
i-1 n
X§P+1) = fl {w(bi— Z ai.x(r+1)— z ai.x(r))/aii+(1—u0x§r)} g 1% 1525usagte
j=1 j=itq H Y
(4.10)

In most applications of S.0.R. the matrix of coefficients is sparse. Let us
suppose that each row of A contains at most m non-zero elements. Equation
(4.70) then leads to

a. .

ii

i i 13 ]

X(r+1) =(»i bi(1+y(r))—i£1a,.X<r+1)(1+n§§))— ; aijxgr)(1+n§§)) }/
Jj=1 j=1i+1

(-9 ey, (a00)

where
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| ygr)| < (m+1)27", lng)l < (m+2)27", l@ir)l ST P (4.12)

If we define the error vector fr by the equation

~1
= wD (b—Lxr+ —er)+(1—n®xr+fr (4413)

e 1

then the ith element of fr satisfies

] i-1 n . ;
TN < Lol Qo+ 2 Ja e 2 (o, ) me2)e™ la +2l1-0ll£{7) 27
i i i i3] ot 1373 ii i

and using assumption (4.9) this gives

Ll <2{(me2)l w [0 + |07 (weo)1] s2l1-ofie™ x|l (4.14)

provided we use an absolute norm, that is a norm for whichi!l Al||= " A

From equation (4.13) we obtain
. 1 ay=1 =1-.1=1
X 4q = P(u»)xr+(Lr|-wD) b+ (I+wD™ L) £, (4.15)
and if we put

17 y=1
£, = (I+wD™ 'L) B (4.16)

then this gives

e

1Lng=1
ny P(w)xr-x&(lﬁz@) Ax*Sf

1

P(w)x_~(1+D) ™ (L+D-L-D-U)x+ e

P(w)xr—P(qu+er

]

P(oo)erh:r (4.17)

which is of the same form as equation (4.5) so that equation (4.8) holds where

B is such that
g <2ll(+ed™ L) { (me2) @l Dl "allell 7" (meu) 1] +2l1=wlio™ . (4.18)

In the case of Gauss-Seidel where ¢ = 1 this becomes
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s (L) L i Al o7 () I ()2 (4.19)

We now give two examples of the use of these bounds. First we consider the
matrix A of equation (2.1) with the choice of parameters given by equation (2.7).

If we take the norm

|l aff . = [lx'ak |, , X diagonal (4.20)

|
i K
then we have already seen that the matrix

1 O LN O

0 10 vee 0

K = . L] L
_ O 0 cee 1099,
gives
| 2
I 2 @) g < 2

and so for this choice of norm we can certainly take

5= 2.
9
For this particular matrix

(st Y = -1-1_-(-» P_(©)

so that

-1 \=1 10
|| (T+wD™ ')~ || < 5.

We also have that

Sl e el 16 o _ot_ 1
| D A“K"HTOTI'“?S and [l 07 (w0) |l T

so that substitution into (4.18) and (4.8) gives

and
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R
le'T—L < 39)(2—')5'
ek
At first sight this looks to be a very satisfactory result, but we have to

remember that the result is true only for vector norms which are consistent

with the matrix norm IIAIIK. If we take the vector norm ” XlIK defined by

=l = Ix"xll, = max (10", 1)
i

our bound merely implies that

The {max(101—i|e§rh )} < 39 max(101—i|xil)2_t .
r->c 1 i

If the elements of x are all of the same order of magnitude then

EI;{ max(101—ile(r)])§ < 39 |X1 7
T -> o0 1 e
and this bound can be satisfied even if
Ier(lr)|= 39 lx1l1on"12:B = 39 |x1l1on'1‘tL°g102 L

As a second example we consider the use of the method of Gauss-Seidel on a
strictly diagonally row dominant matrix A, That is A is such that
n
la | > 2 Iaijl y L= 1,2, 00,0, (4.21)
J=1
it
The usual proof of convergence of Gauss-Seidel with such a matrix is based on

showing that p(P) <1 where P is the iteration matrix. However, a straightforward

inductive proof shows that there exists a & such that

el <8< (4.22)
and that

| (z07')7 _ < m. (4.23)

Since we also have that



i

I D—1A”w < 2and D7 ()l <1 (4.24)

substitution into equations (4.19) and (4.8) show that

B < 6n(m+2)2'"JG
and
— le.|l
. 0 g 6n(m+2) -t
T2 I = S (4.25)

In terms of the elements of S and x this gives
Lim le(r)l < éﬁigigl (max |x.| )2_JG
i 16 . i
T > X
and assuming that the elements of x are of roughly the same order of magnitude,
we can guarantee a computed solution which is close to the exact solution so

long as & is not too close to unity. Notice also that equation (4.22) implies
| 27 o S 8" < 1 (4.26)

go that growth in the elements of P’ cannot occur. A bound on " E IL is
therefore more satisfactory than a corresponding bound on p(P), but of course
we have always p(P)$ ll Pll in any norm and hence o(P) gives the best estimate

of the asymptotic rate of convergence.

The important distinction between these two examples is in the choice of norm.
In the first case the size of the norm gives no sensible indication as to the
size of elements, whereas in the second example the size of the norm is also a

bound on the size of the elements.

From a practical point of view we must be wary of taking results on the
asymptotic rate of convergence at their face value. The situation is much more
satisfactory if we can also establish that “ Prll< 1 in some natural norm where

we might define such a norm as being one for which
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max laijl < |A]l € n max| aijl (4.27)

where A is a p x g matrix and n = max(p,q). The norms IIA"1, ‘!AHZ’ ﬂ Allw
and |IA|IF all satisfy equation (4.27) whereas norms such as those of equation

(4.20) will not in general do so.

It is perhaps worth mentioning that even when “ Prll is marginally greater than
unity in some natural norms then provided p(Pr) is appreciably less than unity
we can expect that the errors resulting from inexact arithmetic in any one
iteration will not grow too large before the asymptotic rate of convergence

begins to assert its authority.

5  CONCLUSION

We have shown that the practical convergence of a linear iterative method can

be very different from the theoretical convergence. In particular we have given
examples to show that the methods of Gauss—Seidel and 3.0.R. can both be very

poorly behaved., Although the condition
p(Pr) <& <1

guarantees convergence in the mathematical sense we cannot take this at face value.
To be certain of satisfactory convergence in practice one must show that there is a

natural norm for which

2. <8, <1,

However, if p(Pr) <& <1 and there is a natural norm for which H Prll is not

significantly greater than unity practical convergence is reasonably probable,



19

REFERENCES

VARGA, R S, 1962, Matrix Iterative Analysis, Prentice-Hall, New Jersey.
WILKINSON, J H, 1963, Rounding Errors in Algebraic Processes, Notes on
Applied Science No 32, Her Majesty's Stationery Office, London;
Prentice-Hall, New Jersey.
YOUNG, David M, 1954, Iterative methods for solving partial difference equations

of elliptic type. Trans, Amer, Math, Soc. 76, 92-111.



r
!
&
5
g
1
— 5 : > A VT AT
i AT AT
. { - f 3 % e T i
‘
o - i} - A 7 e Ly R r
{ Sl T DERE SR SV OF S 54 9 1F ¥ < W
R pepespie Ae 42 £ T wes ey bl
an X R 5t T R s Loy
L . ~+
] 4 ‘< ST A §
T L gk bt 5503
£
3 " vl pos Bt brans e b T
L \ g o 4 i STOMES B Y 10T HES DM R AL VAN NP Y & 2
o Ly 6 ! frait il 1o
, P Ry P ah GV 3 Qidt o]
-
€
l
Y

.

i
3







3 S ~
L 5 s,
y(m 3
s 2 S £ » - 2
4 i -
e § R
5359 >

NPL Report NAC 69





