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I. Introduction 

Many multivariate techniques in statlstics are described in terms of an appropriate 

sums of squares and cross products matrix, such as a covariance matrix, or a 

correlation matrix, rather than in terms of the original data matrix. While this 

is frequently the best way of understanding and analysing a technique, it is not 

necessarily the most satisfactory approach for implementing the technique 

computationally. From a numerical point of view, it is usually better to work with 

the data matrix and avoid the formation of a sums of squares and cross products 

matrix. 

This is a review article aimed at the statistician and mathematician who, while not 

being expert numerical analysts, would like to gain some understanding of why it is 

better to work with the data matrix, and of the techniques that allow us to avoid 

the explicit computation of sums of squares and cross products matrices. To give a 

focus and to keep the article of moderate length, we concentrate in particular on 

the use of the singular value decomposition and its application to multiple 

regression problems. In the final two sections we give a brief discussion of 

principal components, canonical correlations and the generalized singular value 

decomposition. 

2. Notation 

Rather than use the standard notation of numerical linear algebra, we use notation 

that is more akin to that of the statistician and so we let X denote an n by p data 

matrix (design matrix, matrix of observation), where p is the number of variables 

and n is the number of data points (objects, individuals, observations). Let x. 
2 

denote the j-th column of X, so that 

X = [ x  1 x 2 . . .  Xp]  (2.1) 



and x. is the n element vector of sample observations for the j-th variable, let Z. 
J J 

and s. be respectively the sample mean and standard deviation for the j-th variable 
J 

and denote ~, D and e respectively as 

= 

~2 

~p 

, e = 1 D Ill °de d!l , (2 .2 )  

where 

d i = Ilo/Si , ' si#O , 

S. =0 . 
Z 

Then the matrix 

= X - e~ T (2.3) 

is the zero means data matrix and the matrix 

= XD (2 .4)  

is the standardized data matrix, because the mean of each column of ~ is zero and 

the variance of each column is unity, unless s. = 0 in which case the j-th column 
J 

is zero. 

The normal ma t r i ces  xTx and ~T~ are  the  sums of  squares  and c ross  p roduc t s  ma t r ix  

and the  c o r r e c t e d  sums of  squares  and c ross  p roduc t s  mat r ix  r e s p e c t i v e l y ,  the  

mat r ix  

C = ~_11 xTx (2 .5 )  

is the sample covariance matrix and 

R = ~ T i  (2 .6)  

is the sample correlation matrix, with r.. as the sample correlation coefficient of 
zJ 

variables x. and x.. Of course 
z 2 



R = DCD 

and both C and R are symmetric non-negative definite. 

The notation llzll and llZll will be used to denote respectively the Euclidean 

length of the n element vector z and the spectral or two norm of the n by p matrix 

Z given by 

n 2 ! t 
[ [ z ] [  = ( X z i ) =  , [ [Z[[  = max I lzzl l  = J ( z T z ) ,  

i=1 I lzl I=1 

where  p (zTz )  d e n o t e s  t h e  s p e c t r a l  r a d i u s  ( l a r g e s t  e i g e n v a l u e )  o f  zTz .  The r e a s o n  

f o r  our  i n t e r e s t  i n  t h e s e  p a r t i c u l a r  norms i s  t h a t  when Z i s  o r t h o g o n a l  t h e n  

I l zz l l  = Ilmll and  I l z l l  = 1 ( z T z  = I). 

A detailed knowledge of the spectral norm of a matrix is not important here and to 

give a feel for its size in relation to the elements of Z we note that 

p n z2 p½ 
I l z l l  ~ ( z z . )½~ I l z l l .  

j=l i=l iJ 

For much of the time we shall use X generically to represent X or X or X. 

3. Instability in Forming Normal Matrices 

For numerical stability it is frequently desirable to avoid forming normal 

matrices~ but instead use algorithms that work directly on the data matrices (see 

for example Golub, 1965). This can be especially important when small 

perturbations in the data can changer or come close to chantings the rank of the 

data matrix. In such cases the normal matrix will be much more sensitive to 

perturbations in the data than the data matrix. 

A well known example is provided by the matrix 

X = 111 0 

0 E 

E / 0 for which xTx = I l+e21 l+e121 

P e r t u r b a t i o n s  o f  o r d e r  ~ a r e  r e q u i r e d  t o  change  t h e  r ank  o f  X, whereas  

p e r t u r b a t i o n s  o f  o n l y  c 2 a r e  r e q u i r e d  t o  change  t h e  r a n k  o f  xTx. Th i s  c o u l d  be 

p a r t i c u l a r l y  d i s a s t r o u s  i f  IEI i s  above  n o i s e  l e v e l ,  w h i l e  e 2 i s  c l o s e  t o  o r  be low  

n o i s e  l e v e l .  



A second example is provided by the case where X is a square non-singular matrix. 

The sensitivity of the solution of the equations 

xb  = y ( 3 . 1 )  

to perturbations in X and y is determined by the size of the condition number of X 

with respect to inversion, c(X), given by 

c(X) = l i x l l  f i x - i l l  (3.2) 

(Wilkinson, 1963 and 1965; Forsythe and Moler, 1967.) Specifically, if we perturb 

X by a matrix E, then the solution of the perturbed equations 

(X+E) (b+e) = y (3.3) 

satisfies 

lleil llEll 
4 c(X) (3.4) 

lib+eli llxll 

For the spectral norm it can be readily be shown that 

c(xTx) = c2(X), (note tha t  c(X) ~ 1) (3.5)  

so that unless c(X) = I, which occurs only when X is orthogonal, xTx is more 

sensitive to perturbations than X. From (3.5) we once again see that perturbations 

of order e 2 in xTx can have the same effect as perturbations of order e in X. 

In terms of solving a system of equations (3.4) and (3.5) imply that if rounding 

errors or data perturbations (noise) mean that we might lose t digits accuracy, 

compared to the accuracy of the data, when solving equations with X as the matrix 

of coefficients,then we should expect to lose 2t digits accuracy when solving 

equations with xTx as the coefficient matrix. 

Similar remarks apply to the sensitivity of the solution of linear least squares 

(multiple regression) problems when X is not square and the residual (error) vector 

is small relative to the solution; once again it is advisable to avoid forming the 

normal equations in order to solve the least squares problem. (Detailed analyses 

can be found in Golub and Wilkinson, 1966; Lawson and Hanson, 1974; Stewart, 1977.) 



We are not trying to imply that normal matrices should be avoided at all costs. 

When X is close to being orthogonal then the normal matrix xTx will be well- 

conditioned, but the additional sensitivity of xTx is a real phenomenon, not just a 

figment of the numerical analyst's imagination and since perturbations in X do not 

map linearly into perturbations in xTx, perturbation and rounding error analyses 

become difficult to interpret when xTx is used in place of X and decisions about 

rank and linear dependence (multicollinearity) are harder to make. 

Of course normal matrices, particularly correlation matrices, provide vital 

statistical information, but the methods to be discussed provide ready access to 

the elements of such matrices. 

4. The QU Factorization and the Singular Value Decomposition 

In this section we briefly introduce and discuss two tools that allow us to avoid 

forming normal matrices. These tools are the well known factorizations the QU 

factorization (or QR factorization, but not to be confused with the QR algorithm) 

and the singular value decomposition (commonly referred to as the SVD). For 

simplicity of discussion we shall assume that n ) p so that X has at least as many 

rows as columns. We shall also not discuss the details of the computational 

algorithms for finding the factorizations, but instead give suitable references for 

such descriptions. Suffice it to say that both factorizations may be obtained by 

numerically stable methods and there are a number of sources of quality software 

that implement these methods (IMSL, NAG, Dongarra et al, 1979; Chan, 1982). 

The Q_U factorization of a matrix X is given by 

( 4 . 1 )  

where Q is an n by n orthogonal matrix, so that QTQ = I and U is a p by p upper 

triangular matrix. Of course the rank of U is the same as that of X and when n = p 

the portion below U does not exist. 

The QU factorization of X always exists and may be found, for example, by 

Householder transformations, plane rotations, or Gram-Schmidt orthogonalization. 

(Wilkinson, 1965; Golub, 1965; Stewart, 1974; Golub and Van Loan, 1983.) 

Two f e a t u r e s  o f  t h e  QU f a c t o r i z a t i o n  a r e  i m p o r t a n t  f o r  our  p u r p o s e s .  F i r s t l y  we 

s e e  t h a t  



xTx = uTu (4.2) 

so the elements of xTx can readily be computed from the inner products of columns 

of U, which means that U gives a convenient and compact representation of xTx. In 

fact, as with xTx, we need only ½p(p+l) storage locations for the non-zero elements 

of U. The matrix U is the Cholesky factor of xTx. Secondly if we perturb U by a 

matrix F then 

°I=l '=°I:l (4.3) 

and since Q is orthogonal 

I I F I I  = I IE I I  (4 .4 )  

so that a perturbation of order ~ in U corresponds to a perturbation of the same 

order of magnitude in X. 

Q is an n by n matrix and so it is large if there are a large number of data 

points, but Q is rarely required explicitly; instead what is usually required is a 

vector, or part of a vector, of the form QTy, for a given y, and this can be 

computed at the same time as the QU factorization is computed. 

The singular value decomposition (SVD) of a matrix X is given by 

X = Q I~l  PT 'o  (4.5) 

where again Q is an n by n orthogonal matrix, P is a p by p orthogonal matrix and 

is a p by p diagonal matrix 

= diag(~i) = 

i ~2 "'" 

O .., 

with non-negative diagonal elements. The factorization can be chosen so that 

~I ~2 ~ "'" ~ ~ ~ O (4.6) 
P 

and we shall assume this to be the case. As with the QU factorization the SVD 
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always exists and is usually obtained by reducing X to bidiagonal form and then 

applying a variant of the QR algorithm to reduce this to ~. (Golub and Kahan, 

1965; Golub and Reinsch, 1970; Wilkinson, 1977 and 1978). The ~., i = i, 2, ..., p 
1 

are the singular values of X, the columns of P are the right singular vectors of X 

and the first p columns of Q are the left singular vectors of X. We have adopted 

here the notation of Stewart (1984) in avoiding the more usual o i for the i-th 

singular value. If we denote the i-th columns of P and Q by Pi and qi respectively 

then equation (4.5) implies that 

XPi = * i q i ,  i = 1, 2 ,  . . . ,  p .  ( 4 . 7 )  

For this factorization we have that 

xTx = PV2P T, ( 4 . 8 )  

which is the classical spectral factorization of xTx. Thus the columns of P are 

2 i = I, 2, .. p are the eigenvalues of the eigenvectors of xTx and the values ~i' " ' 

xTx. 

and P give us an alternative representation for xTx, although not quite as 

compact as U since we now need p(p+l) storage locations, but having the advantage 

that the columns of P are orthonormal. Note that (4.8) implies that 

I l x l l  = '1" (4.9) 

Analagously to equations (4.3) to (4.~) if we perturb ~ by a matrix F then 

0irl   x ,  0i:l  (4.1o) 

and  

I I F I I  = I I E I I  ( 4 . 1 1 )  

so that again perturbations of order e in ~ correspond to perturbations of the same 

order of magnitude in X. 

The SVD i s  i m p o r t a n t  i n  m u l t i v a r i a t e  a n a l y s i s  b e c a u s e  i t  p r o v i d e s  t h e  mos t  r e l i a b l e  

me thod  o f  d e t e r m i n i n g  t h e  n u m e r i c a l  r a n k  o f  a m a t r i x  and  c a n  be  a g r e a t  a i d  i n  

a n a l y s i n g  n e a r  m u l t i c o l l i n e a r i t i e s  i n  t h e  d a t a .  



Of course if X is exactly of rank k < p then from (4.5) and (4.6) we must have 

~k+l = ~k+2 ..... P 

and from (4.7) 

=0 

XPi = 0, i = k+l, k+2, ..., p 

so that these columns of P form an orthonormal basis for the null space of X. 

is of rank p, but we choose the matrix F in equation (4.10) to be the diagonal 

matrix 

c- 
F = d i a g ( f i )  , f i  = J O, i = 1, 2, . . . ,  k ( 4 . 1 2 )  

* i '  i = k + l ,  k+2, . . . ,  p 

t h e n  (X+E) i s  o f  r a n k  k and f rom ( 4 . 1 1 )  

I f  X 

I IEII = ~k+l (4.13) 

so that regarding a small singular value of X as zero corresponds to making a 

perturbation in X whose size is of the same order of magnitude as that of the 

singular value. 

Conversely, if X is of rank p, but E is a matrix such that the perturbed matrix 

(X+E) is of rank k < p then it can readily be shown (Wilkinson, 1978) that 

p n e" 2 P ~2 

j=l i=l 13 i=k+l x 
(4.14) 

so that if the elements of E are small then the singular values ~k+l' ~k+2' "''' 

must also be small. Thus if X has near multicollinearities, then the 
P 

appropriate number of singular values of X must be small. To appreciate the 

strength of this statement consider the p by p matrix 

U =  - I  

0 1 

0 0 

0 0 

0 0 

0 0 

- 1  . . .  - 1  - 1  - 1  TM 

- 1  . . .  - 1  - 1  - 1  

1 . . .  - 1  - 1  - 1  

0 . . .  i - i  - i  

0 . . .  0 1 -1  

0 . . .  0 0 1 ] 



U is clearly of full rank, p, but its appearance belies its closeness to a rank 

deficient matrix. 

E = rO 
0 
: : 

: : 

0 0 

_22-P0 

If we put 

0 ... 0 

0 ... 0 

o.. 0 

• .. 0 

then the matrix (U+E) has rank (p-l), so that when p is not small U is almost rank 

deficient. On the other hand (4.14) assures us that 

< 2 2-p 
P 

so that the near rank deficiency will be clearly exposed by the singular values. 

For instance, when p = 32 so that 22-p = 2 -30 = 10 -9 the singular values of U are 

approximately 20.05, 6.925, ..., 1.449~ 5.280 x I0 -I0 and ~32 is indeed less than 

10-9. 

When the SVD is computed by numerically stable methods then the above remarks also 

hold in the presence of rounding errors~ except when the perturbations under 

consideration are smaller than the machine accuracy~ which is not very likely in 

practice. Even then we only have to allow for the fact that computationally 

singular values will not usually have values less than about eps.~l, where eps is 

the relative machine precision~ because now the machine error dominates the data 

error. For example on a VAX 11/780 in single precision~ for which 

eps = 2 -24 = 6 x 10 -8 , the smallest singular value of the above matrix U, as 

computed by the NAG Library routine FO2WDF~ was 4.726 x 10 -8 instead of 

~32 = 5.280 x I0 -I0. 

The singular value decomposition is of course a more complicated factorization than 

the QU factorization~ it requires more storage and takes longer to computes 

although this latter aspect is frequently over-emphasized. 

For many applications the" QU factorization is quite sufficient and a convenient 

strategy is to compute this factorization and then test U to see whether or not it 

is suitable for the particular application. 

10 



For example, if U is required to be non-singular then, at a moderate extra expense, 

we can compute or estimate its condition number c(U) in order to determine whether 

or not U is sufficiently well-conditioned. If U is not suitable we can then 

proceed to obtain the SVD of U as 

U = Q v pT, (4.15) 

where Q and pT are orthogonal and~is diagonal. From (4.5) we get that the SVD of 

X is then given by 

x  I:l eO ° I (4.16) 

and thus the singular values and right singular vectors of U and X are identical. 

We can take advantage of the upper triangular form of U in computing its SVD and 

for typical statistical data where n is considerably larger than p the time taken 

will be dominated by the QU factorization of X. The NAG Library routine FO2WDF is 

an example that explicitly allows the user to stop at the QU factorization if U is 

not too ill-conditioned. 

Particularly important in some statistical and real time applications is the fact 

that the QU factorization may be obtained by processing the matrix X one 

observation, or a block of observations at a time, so that the complete matrix X 

need not be held all at once, but can be sequentially processed to give the compact 

representation U. This can be achieved by well known updating techniques using, 

for example, plane rotations. (Golub, 1965; Gentleman, 1974a; Gill and Murray, 

1977; Dongarra et al, 1979; Cox, 1981.) 

In the next section we demonstrate that such techniques can also be used to obtain 

the QU factorization of X and of X. 

5. The QU Factorization of Corrected Sums of Squares and Cross Product Matrices 

As mentioned in the previous section there are many applications where it is 

desirable to process the data sequentially without storing the data matrix X. 

Statistical packages such as BMDP (1977) allow one to form covariance and 

correlation matrices by sequentially processing the data and we now show that we 

can also obtain the QU factorization of such matrices by a corresponding process. 

11 



First we note that sample means and variances can be computed sequentially and, 

indeed~ there are good numerical reasons for preferring to compute means and 

variances this ways rather than by the traditional formulae. (Chan and Lewis~ 

1979; West~ 1979; Chant Golub and LeVeque~ 1982.) If we denote the i-th 

observation of the j-th variable as x (i) and let (r) and f(r) denotes j Yj j 
r e s p e c t i v e l y ,  the es t ima ted  sums of  squares  of  d e v i a t i o n s  from the  mean and the  

es t ima ted  mean of  the  f i r s t  r o b s e r v a t i o n s ,  so t h a t  

r r 
~ ! r )  = ( Z  x!i))/r, y ! r )  = Z ( ~ ! r ) -  x ! i ) ) 2 ,  
J i=l J J i=l J J 

then it is readily verified that 

~ ! r )  = ~ ! r - 1 )  + ( x ! r )  _ ~ ! r - 1 ) ) / r  (5 .1)  
J J 3 J 

(r) ( r - l )  ( r - l )  (x! r) - ~ ( r -1 ) )2 / r  
Yj = Yj + j J 

Of course  

~j = ~(n)j and s29 = y g n ) / ( n - 1 )  (5 .2)  

and so we can ob t a in  R and D of  (2 .2)  with one pass through the  da t a .  Given the  QU 

f a c t o r i z a t i o n  of  X, (2 .3)  g ives  

 =°il 
f = QTe ( 5 . 3 )  

If we find the QU factorization of the matrix in braces as, say 

(5.4) 

and put 

= QQ1 (5 .5)  

then the QU factorization of X is 

12 



.o 
(5.6) 

The factorization of (5.4) is a rank one update problem and there are standard 

methods by which the factorization can be obtained economically (Gill and Murray, 

1977; Golub and Van Loan, 1983, section 12-6). Since we can obtain the QU 

factorization of X by sequentially processing the data and noting that 0D is still 

upper triangular, equations (5.1), (5.2) and (5.6) enable us to find the QU 

factorizations of X and of X, and hence the Cholesky factors of the matrices C and 

R of (2.5) and (2.6), by sequentially processing the data one or more observations 

at a time. 

As an alternative we can obtain the QU factorization of X by an updating process. 

If we let X denote the zero means data matrix for the first r observations, let z T 
r ~(r)  r 

denote the r - th  row of X and define as the vector 

(~(r))T [ ~ r )  _(r)  ~(r)]  
= x 2 ... p 

and take the number of elements in the vector e by context, then using (5.1) 

Xr+l = Xr+l - e(x(r+l))T 

~ ( r ) ) / ( r + l ) ]  T 
= I r E  ] - i :  Ix(r) + (Zr+l - 

k ~r+P 

so that 

Xr+l I f 1 _ ~(r))T 1 = r - r+--~ e (Zr+ 1 (5.8) 

(Zr+ 1 _ ~(r+l))T 

We can obtain the QU factorization of {Xr- 1 (r) T e(Zr+l-~ ) } from that ofMr by 

the method described above and we can then update this QU factorization by the 
, _(r+l))T. addi t ional  row tZr+l-X In e i ther  method i t  does not seem to be possible to 

avoid s tor ing the n element vector QTe. 

A method requiring storage only of additional p element vectors would be useful. 

As described earlier we can readily obtain the SVD of X or X via the upper 

triangular factor. 
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6. Solving Multiple Regression Problems 

In this section we consider the application of the QU factorization and the SVD to 

multiple regressions or linear least squares~ and take X to denote either the data 

matrix~ or the standardized data matrix since the solution of a regression with one 

matrix can be deduced from the solution with the other. 

We wish to determine the vector b (the resression coefficients) to 

T 
minimize r r, where y = Xb + r, (6.1) 

where y is a vector of dependent observations and r is the residual vector usually 

assumed to come from a normal distribution with 

E(r) = 0 and E( r r  T) = o2I.  

If Q is orthogonal then 

rTr = rTQTQr = (Qr)T(Qr) 

and (6.1) is equivalent to 

minimize ~T~, where QTy = QTxb + ~, = QTr. (6.2) 

If we choose Q as the orthogonal matrix of the QU factorization of X and partition 

QTy as 

then 

(6.3) 

~-= [~wtrb] (6.4) 

If X has linearly independent columns then U will be non-singular and we can choose 

b so that 

lib = ~ .  ( 6 . 5 )  

14 



Since w is independent of b, this must be the choice of b that minimizes r~r and 
T 

hence r r (Golub, 1965; Gentleman, 1974b). For this choice 

II T T 
= 0 so that r r = w w (6.6) 

w 

which is information that is lost when the normal equations are formed. We need 

not retain w during the factorization, but we can instead just update the sum of 
T 

squares so that we have the single value w w on completion of the QU factorization. 

As the discussion in section 3 indicates, the sensitivity of the solution of (6.5) 

is determined by the closeness of X to rank deficiency, whereas the sensitivity of 

the solution of the normal equations is determined by the closeness of xTx to rank 

deficiency (Wilkinson, 1974). 

If X is rank deficient, so that its columns are not linearly independent then U 

will be singular. Using the notation of (4.14), if we then obtain the SVD of U 

(6.4) becomes 

so that (6.1) is equivalent to 

^T^ 
minimize r r, where ~ = ~T9 _ ypTb. (6.7) 

If X has rank k then only the first k singular values will be non-zero, so let us 

put 

= ~S O~ , S - k by k and non-singular (6.8) 

t 3 0 0 

and correspondingly partition ~T~ an pTb as  

Then 

r = ( 6 . 1 0 )  

15 



A T ^ ^ 

and r r is minimized by choosing c so that 

= ( 6 . 1 1 )  

^ ^ 

Since S is diagonal c i = yi/¢i, i = i, 2, ..., k. 

T T ^T ̂  T T 
r r  = w w + r r = w w + v v .  

We also have 

( 6 . 1 2 )  

As c is not determined by (6.11) we can see that the solution is not unique. The 

particular solution for which bTb is also a minimum is called the minimal length 

solution and from (6.9) we see that this is given by taking 

c = 0 in which case b = P 

(Golub and Reinsch, 1970; Peters and Wilkinson, 1970). 

( 6 . 1 3 )  

In practice X will not be exactly rank deficient and the computed singular values 

will not be exactly zero and while it is not always easy to decide upon the 

numerical rank of X, (Golub, Klema and Stewart, 1976; Stewart, 1979; Klema and 

Laub, 1980; Stewart, 1984) equations (4.10) - (4.13) tell us about the effects of 

neglecting small singular values. Furthermore (4.7) gives 

[ [XPi [ [  = ~i  ( 6 . 1 4 )  

and so the columns of P corresponding to small singular values give valuable 

information on the near multicollinearities in X. We can also readily assess the 

affects of different decisions on the rank of X on the solution and on the residual 

sum of squares from a knowledge of the singular values and right singular vectors 

(Lawson and Hanson, 1974, chapter 25, section 6). 

The usual additional statistical information can efficiently be computed from 

either of the factorizations. For example, when X is of full rank then the 

estimated variance-covariance matrix of the sample regression, V, is defined as 

V = s2 (xTx)  - 1 ,  ( 6 . 1 5 )  

2 . 
where  s zs  t h e  e s t i m a t e d  v a r i a n c e  o f  t h e  r e s i d u a l  and f rom ( 4 . 2 )  t h i s  becomes 

V = s2(uTu)  -1  = s2U-1U -T ( 6 . 1 6 )  

16 



and the element v.. is given by z j  

2 T -1  -T  2 T 
vi-'J = s e .U  U e .  = s f . f . ,  u T f .  = e .  

I j i j j j 
( 6 . 1 7 )  

where e i is the i-th column of the unit matrix. In particular the diagonal 

elements v.. are the estimated variances of the sample regression coefficients and 
ii 

these can efficiently be computed from 

2 T uTfi 
vii = s fifi , = ei, 

this requiring just one forward substitution for each f.. 
i 

When X is not of full rank and a minimal length solution has been obtained, then in 

place of (6.15) we must take 

V = s 2 ( x T x )  * ( 6 . 1 8 )  

where  (xTx)  t i s  t h e  p s e u d o - i n v e r s e  o f  xTx,  and  f rom ( 4 . 8 )  t h i s  becomes  

V = s 2 ( p v 2 p T )  * = s 2 p ( v 2 ) f P  T 

s2P IS2o o°IPT 
and if we partition P as 

P = [P1 P2 ] '  P1 - p by  k 

t h e n  c o r r e s p o n d i n g  t o  ( 6 . 1 7 ) ,  h e r e  we h a v e  

2 T T 
v . .  = s f . f . ,  S f .  = P1 e .  

13 z j j j 

and once again the elements of V can be computed efficiently. 

( 6 . 1 9 )  

As a s e c o n d  e x a m p l e ,  i f  x i s  a p e l e m e n t  v e c t o r  o f  v a l u e s  o f  t h e  v a r i a b l e s  X l ,  x2 ,  

. . . ,  x , t h e n  t h e  e s t i m a t e d  v a r i a n c e  o f  t h e  e s t i m a t e  o f  t h e  d e p e n d e n t  v a r i a b l e  xTb 
P 

i s  g i v e n  by  

2 a = s2xTvx (6.20) 
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and this can be computed from 

2 a = s 2 f T f ,  uTf  = x ( 6 . 2 1 )  

for the QU factorization and 

2 a = s 2 f T f ,  Sf  = P l x  ( 6 . 2 2 )  

for the SVD. 

If we relax the assumption that E(rr T) = o2I and instead have 

E ( r r  T) = o214, 

where W is non-negative definite, then the usual approach is to obtain the 

regression coefficients as the solution of the weighted least squares problem 

minimize rTw-lr, where y = Xb + r ( 6 . 2 3 )  

because E(W-|rr T) = o2I. Unless W is well-conditioned, solving (6.23) explicitly 

is numerically unstable and the problem is not even defined when W is singular. If 

we let F be any matrix such that 

W = FF T 

and let e be an error vector satisfying 

Fe = r ,  

then (6.23) is equivalent to the generalized linear least squares problem 

T 
minimize e e 

s u b j e c t  t o  y = Xb + Fe 

(6.24) 

and now W is not required to be non-singular. Methods for the solution of (6.24) 

based on the QU factorization and on the SVD have been discussed by Paige (1978, 

1979a, 1979b) and by Korouklis and Paige (1981). To briefly indicate how the SVD 

may be used~ partition Q as 
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Q = [Q1 Q2 ] 

Then m u l t i p l y i n g  t h e  l i n e a r  c o n s t r a i n t s  i n  ( 6 . 2 4 )  by QT and u s i n g  t he  n o t a t i o n  of  

(6.8) and (6.9) we find that 

T 
S~ = QTy - QiBe, 

from which ~ is determined from e, c is arbitrary and e must satisfy 

Q~y T 
= Q2Be. 

An SVD of  Q~B e i t h e r  a l l o w s  e t o  be d e t e r m i n e d ,  o r  shows t h a t  t he  e q u a t i o n s  a r e  

i n c o n s i s t e n t  (Hammarl ing,  Long and M a r t i n ,  1983) .  

When X, as  w e l l  as  y ,  c o n t a i n s  e x p e r i m e n t a l  e r r o r  t h e n  i n  p l a c e  of  ( 6 . 1 )  i t  may be 

more a p p r o p r i a t e  t o  f i n d  t h e  r e g r e s s i o n  c o e f f i c i e n t s  as  t h e  s o l u t i o n  of  t h e  t o t a l  

l e a s t  s q u a r e s  p rob lem (Oolub and Van Loan, 1980) 

2 
m i n i m i z e  I I ( E , r ) I I F ,  where y = (X+E)b + r ( 6 . 2 5 )  

2 p n 2 
= ~ Z xij. If we assume that X is of full rank and put 

and IIX[[ F j=l i=l 

Z = ( X , - y ) ,  F = ( E , r )  

t h e n  ( 6 . 2 5 )  becomes 

minimize I IFI I F, where (Z+F) b = 0 (6.26) 

1 

and so we require the minimum perturbation that makes Z rank deficient with [b T I] T 

in the null space of (Z+F). If we let the SVD of Z be 

Z=Q 

0 Vp 

0 

pT and put F = Q 

°° I 
0 -4 + 

o 

pT 

then F makes (Z+F) rank deficient and is of minimum norm (Golub and Van Loan, 1983, 

corollary 2.3-3). If the (p+l)th right singular vector (last column of P) is 

denoted by [pT piT, and if p / 0 then it is readily verified that the regression 

coefficients are given by 
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b = (1 /o )p .  (6 .27)  

For further details see Golub and Van Loan (1980, 1983) and for discussion of the 

case where 0 = 0 and a comparison with standard regression see Van Huffel, 

Vandewalle and Staar (1984). 

7. Other Applications in Multivariate Analysis 

In this section we give a very brief mention of two further applications of the SVD 

in multivariate analysis. 

Given a zero means data matrix X, possibly standardized, the aim of a principal 

component analysis is to determine an orthogonal transformation of the columns of 

to a data matrix Y whose columns have non-increasing variance, each column of 

having as large a variance as possible. 

It is well known, and in any case readily established from the Courant-Fischer 

theorem (Wilkinson, 1965, chapter 2, section 43), that Y is given by 

= XP, (7 .1 )  

where P is the matrix of eigenvectors of ~T~. From (4.8) and (4.5) we therefore 

see that P is the matrix of right singular vectors of X and that 

(7 .2 )  

so that the j-th principal component of X is given by 

Yj = ~ j q j ,  (7 .3 )  

^ 

where qj is the j-th left singular vector of X, and the estimated variance of y3 

$~/(n-1). Again, we can avoid the formation of ~T~ and the SVD allows us to 

properly use our judgement as to which components are significant. 

is 

Given two zero mean data matrices X and Y the canonical correlation problem is to 

find a transformation, A, of the columns of 

z = ~A (7 .4 )  
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such that the columns of Z are orthonormal and such that regression of a column of 

Z on X maximizes the multiple correlation coefficient. 

Let the SVD's of X and Y be 

X ~ 

O r 

p a r t i t i o n  Qx' % and Py as  

and let 

o°1'; 

Noting 

(7.5) 

C = ~pTA. ( 7 . 6 )  
Y 

This  g i v e s  

and hence  i f  t h e  columns of  Z a r e  o r t h o n o r m a l  t h e n  so a r e  t h e  columns o f  C. 

that 

(7.8) 

it is now a Straightforward matter to show that the canonical correlation problem 

for the pair (X,Y) can be solved from the solution to the principal component 

~T~ The multiple correlation coefficients, or the problem for the matrix QxQy. 

canonical correlation coefficients, are the singular values of~Q v. The canonical 

correlation example is included to indicate the potential power of the SVD as an 

aid to the solution of difficult multivariate statistical problems. 

A full discussion of this and related topics is given by Bj~rck and Golub (1973). 

See also Golub and Van Loan (1983, section 12.4). When X and Y are both of full 

rank then we can use the QU factorization of X and Y in place of their SVD's 

(Golub, 1969). 

A number o f  o t h e r  a p p l i c a t i o n s  o f  t h e  SVD i n  m u l t i v a r i a t e  a n a l y s i s  a r e  d i s c u s s e d  by 

Chambers (1977) and by B a n f i e l d  (1978) .  
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8. The Generalized Singular Value Decomposition 

Here we briefly mention an important generalization of the SVD that is relevant to 

a pair of data matrices (X,Y) of dimension n by p and m by p. To simplify the 

discussion we assume that m $ p and that Y is of full rank. In this case the 

generalized singular value decomposition (GSVD) is given by 

x  I'x :1 o , I ,  o (8,1) 

where Qx and Qy are or thogonal  and $ and x y 
= diag(ai) , ~ = diag(8 i) with x y 

are  diagonal mat r i ce s ,  

2 ~2 
• + = 1 a i > O, 8 > O. (8.2) 1 1 ' i 

The pairs (ai,Bi) are called the generalized singular values and can be chosen with 

the a. in descending order and the 8. in ascending order (Van Loan, 1976) This 1 1 " 
and the unrestricted case are discussed by Paige and Saunders (1981) and we 

strongly recommend reference to their paper. 

From (8.1)  we see tha t  

xTx = z-T Io~2X (8.3) 

so that Z is the congruence matrix that simultaneously diagonalizes the normal 

matrices (xTx, yTy) and hence the columns of Z are the eigenvectors of the 

generalized symmetric eigenvalue problem 

(xTx)z = ~(YTY)z (8.4) 

2 2 
and the (ai/Bi) are the corresponding eigenvalues. Thus, just as the SVD allows us 

to avoid the numerically damaging step forming xTx, the GSVD allows us to avoid the 

numerically damaging step of forming the pair (xTx, yTy). 

Unlike the SVD there is not yet quality software available for computing the GSVD, 

but numerically stable algorithms are beginning to emerge (Stewart, 1983; Paige, 

1984b) and such software will surely be available in the near future. This will 

mean that we can use the natural tool for tackling multivariate problems involving 
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matrix pairs (X,Y), rather than using the SVD, which is really only the natural 

tool when a single data matrix is involved. 

Two such examples are the generalized least squares problem and the canonical 

correlation problem, discussed in the previous two sections. Paige (1984a) has 

given an elegant analysis of the generalized least squares problem in terms of the 

GSVD, and for the canonical correlation problem it can readily be shown that we 

simply have to replace the Qx and % of (7-5) by those~Tof (8.1) and then we again 

solve the principal component problem for the matrix ~-Q'Qy" 
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